Locally harmonic Maass forms of positive even weight

被引:0
作者
Mono, Andreas [1 ]
机构
[1] Univ Cologne, Dept Math & Comp Sci, Div Math, Weyertal 86-90, D-50931 Cologne, Germany
关键词
EISENSTEIN SERIES; MODULAR-FORMS; COEFFICIENTS; DERIVATIVES;
D O I
10.1007/s11856-023-2592-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We twist Zagier's function f(k,D) by a sign function and a genus character. Assuming weight 0 < k equivalent to 2(mod 4), and letting D be a positive non-square discriminant, we prove that the obstruction to modularity caused by the sign function can be corrected obtaining a locally harmonic Maa ss form or a local cusp form of the same weight. In addition, we provide an alternative representation of our new function in terms of a twisted trace of modular cycle integrals of a Poincar & eacute; series due to Petersson.
引用
收藏
页码:671 / 694
页数:24
相关论文
共 44 条
  • [1] Identities of cycle integrals of weak Maass forms
    Alfes-Neumann, Claudia
    Schwagenscheidt, Markus
    [J]. RAMANUJAN JOURNAL, 2020, 52 (03) : 683 - 688
  • [2] [Anonymous], 1979, JOURNEES ARITHMETIQU
  • [3] Asai Tetsuya, 1997, Comment. Math. Univ. St. Paul., V46, P93
  • [4] Bengoechea P., 2013, CORPS QUADRATIQUES F
  • [5] Bringmann K., 2017, AM MATH SOC COLLOQ P, V64
  • [6] Bringmann K., ARXIV
  • [7] Arithmetic properties of coefficients of half-integral weight Maass-Poincare series
    Bringmann, Kathrin
    Ono, Ken
    [J]. MATHEMATISCHE ANNALEN, 2007, 337 (03) : 591 - 612
  • [8] Ramanujan-like formulas for Fourier coefficients of all meromorphic cusp forms
    Bringmann, Kathrin
    Ben Kane
    [J]. ADVANCES IN MATHEMATICS, 2020, 373
  • [9] On divisors of modular forms
    Bringmann, Kathrin
    Kane, Ben
    Loebrich, Steffen
    Ono, Ken
    Rolen, Larry
    [J]. ADVANCES IN MATHEMATICS, 2018, 329 : 541 - 554
  • [10] On the Fourier coefficients of negative index meromorphic Jacobi forms
    Bringmann, Kathrin
    Rolen, Larry
    Zwegers, Sander
    [J]. RESEARCH IN THE MATHEMATICAL SCIENCES, 2016, 3