Fractional maximal operator in the local Morrey-Lorentz spaces and some applications

被引:2
作者
Guliyev, V. S. [1 ,2 ]
Aykol, C. [3 ]
Kucukaslan, A. [4 ]
Serbetci, A. [3 ]
机构
[1] Baku State Univ, Inst Appl Math, Baku, Azerbaijan
[2] Inst Math & Mech, Baku, Azerbaijan
[3] Ankara Univ, Dept Math, Ankara, Turkiye
[4] Ankara Yildirim Beyazit Univ, Dept Aerosp Engn, Ankara, Turkiye
关键词
Local Morrey-Lorentz spaces; Fractional maximal operator; Schrodinger operator; SUFFICIENT CONDITIONS; SCHRODINGER-OPERATORS; BOUNDEDNESS; INEQUALITY;
D O I
10.1007/s13370-023-01145-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, we obtain the necessary and sufficient conditions for the boundedness of the fractional maximal operator M(alpha)in the local Morrey-Lorentz spaces M-p,q; lambda(loc) (R-n). We use sharp rearrangement inequalities while proving our result. We apply this result to the Schrodinger operator -Delta + V on R-n, where the nonnegative potential V belongs to the reverse Holder class B-infinity(R-n). The local Morrey-Lorentz MMp,q; lambda loc (R-n)-> M-q,s; lambda(loc)(Rn) estimates for the Schrodinger type operators V-gamma(-Delta + V)(-beta) and V-gamma del (-Delta + V)(-beta) are obtained.
引用
收藏
页数:11
相关论文
共 50 条
[21]   On boundedness of the fractional maximal operator from complementary Morrey-type spaces to Morrey-type spaces [J].
Burenkov, V. I. ;
Guliyev, H. V. ;
Guliyev, V. S. .
INTERACTION OF ANALYSIS AND GEOMETRY, 2007, 424 :17-+
[22]   Calderon Operator on Local Morrey Spaces with Variable Exponents [J].
Ho, Kwok-Pun .
MATHEMATICS, 2021, 9 (22)
[23]   Boundedness of Fractional Maximal Operator and its Commutators on Generalized Orlicz–Morrey Spaces [J].
Vagif S. Guliyev ;
Fatih Deringoz .
Complex Analysis and Operator Theory, 2015, 9 :1249-1267
[24]   FRACTIONAL MAXIMAL OPERATOR AND ITS COMMUTATORS IN GENERALIZED MORREY SPACES ON HEISENBERG GROUP [J].
Eroglu, Ahmet ;
Azizov, Javanshir, V ;
Guliyev, Vagif S. .
PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2018, 44 (02) :304-317
[25]   BOUNDEDNESS OF FRACTIONAL MAXIMAL OPERATOR AND THEIR HIGHER ORDER COMMUTATORS IN GENERALIZED MORREY SPACES ON CARNOT GROUPS [J].
Guliyev, Vagif ;
Akbulut, Ali ;
Mammadov, Yagub .
ACTA MATHEMATICA SCIENTIA, 2013, 33 (05) :1329-1346
[26]   Characterizations for the fractional maximal operator and its commutators in generalized weighted Morrey spaces on Carnot groups [J].
Guliyev, V. S. .
ANALYSIS AND MATHEMATICAL PHYSICS, 2020, 10 (02)
[27]   On the Dirichlet problem for the elliptic equations with boundary values in variable Morrey-Lorentz spaces [J].
Li, Bo ;
Liu, Jun ;
Shen, Tianjun ;
Yan, Xianjie .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 407 :311-344
[28]   Boundedness of Fractional Maximal Operator and its Commutators on Generalized Orlicz-Morrey Spaces [J].
Guliyev, Vagif S. ;
Deringoz, Fatih .
COMPLEX ANALYSIS AND OPERATOR THEORY, 2015, 9 (06) :1249-1267
[29]   Commutator of fractional integral with Lipschitz functions associated with Schrodinger operator on local generalized Morrey spaces [J].
Guliyev, Vagif S. ;
Akbulut, Ali .
BOUNDARY VALUE PROBLEMS, 2018,
[30]   Maximal operators and singular integrals on the weighted Lorentz and Morrey spaces [J].
Nguyen Minh Chuong ;
Dao Van Duong ;
Kieu Huu Dung .
JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2020, 11 (01) :201-228