Fractional maximal operator in the local Morrey-Lorentz spaces and some applications

被引:1
|
作者
Guliyev, V. S. [1 ,2 ]
Aykol, C. [3 ]
Kucukaslan, A. [4 ]
Serbetci, A. [3 ]
机构
[1] Baku State Univ, Inst Appl Math, Baku, Azerbaijan
[2] Inst Math & Mech, Baku, Azerbaijan
[3] Ankara Univ, Dept Math, Ankara, Turkiye
[4] Ankara Yildirim Beyazit Univ, Dept Aerosp Engn, Ankara, Turkiye
关键词
Local Morrey-Lorentz spaces; Fractional maximal operator; Schrodinger operator; SUFFICIENT CONDITIONS; SCHRODINGER-OPERATORS; BOUNDEDNESS; INEQUALITY;
D O I
10.1007/s13370-023-01145-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, we obtain the necessary and sufficient conditions for the boundedness of the fractional maximal operator M(alpha)in the local Morrey-Lorentz spaces M-p,q; lambda(loc) (R-n). We use sharp rearrangement inequalities while proving our result. We apply this result to the Schrodinger operator -Delta + V on R-n, where the nonnegative potential V belongs to the reverse Holder class B-infinity(R-n). The local Morrey-Lorentz MMp,q; lambda loc (R-n)-> M-q,s; lambda(loc)(Rn) estimates for the Schrodinger type operators V-gamma(-Delta + V)(-beta) and V-gamma del (-Delta + V)(-beta) are obtained.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Fractional maximal operator in the local Morrey–Lorentz spaces and some applications
    V. S. Guliyev
    C. Aykol
    A. Kucukaslan
    A. Serbetci
    Afrika Matematika, 2024, 35
  • [2] Boundedness of the maximal operator in the local Morrey-Lorentz spaces
    Canay Aykol
    Vagif S Guliyev
    Ayhan Serbetci
    Journal of Inequalities and Applications, 2013
  • [3] Boundedness of the maximal operator in the local Morrey-Lorentz spaces
    Aykol, Canay
    Guliyev, Vagif S.
    Serbetci, Ayhan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [4] Maximal operator and Calderon-Zygmund operators in local Morrey-Lorentz spaces
    Guliyev, V. S.
    Aykol, C.
    Kucukaslan, A.
    Serbetci, A.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2016, 27 (11) : 866 - 877
  • [5] Riesz potential in the local Morrey-Lorentz spaces and some applications
    Guliyev, Vagif S.
    Kucukaslan, Abdulhamit
    Aykol, Canay
    Serbetci, Ayhan
    GEORGIAN MATHEMATICAL JOURNAL, 2020, 27 (04) : 557 - 567
  • [6] Maximal and Calderon-Zygmund operators on the local variable Morrey-Lorentz spaces and some applications
    Kucukaslan, A.
    Guliyev, V. S.
    Aykol, C.
    Serbetci, A.
    APPLICABLE ANALYSIS, 2023, 102 (02) : 406 - 415
  • [7] RIESZ POTENTIALS IN THE LOCAL VARIABLE MORREY-LORENTZ SPACES AND SOME APPLICATIONS
    Aykol, Canay
    Hasanov, Javanshir
    MISKOLC MATHEMATICAL NOTES, 2024, 25 (01) : 141 - 151
  • [8] Fractional Operators on Morrey-Lorentz Spaces and the Olsen Inequality
    Hatano, N.
    MATHEMATICAL NOTES, 2020, 107 (1-2) : 63 - 79
  • [9] Embeddings for Morrey-Lorentz Spaces
    Ragusa, Maria Alessandra
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 154 (02) : 491 - 499
  • [10] The boundedness of Hilbert transform in the local Morrey-Lorentz spaces
    Aykol, C.
    Guliyev, V. S.
    Kucukaslan, A.
    Serbetci, A.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2016, 27 (04) : 318 - 330