The Novel Green Learning Artificial Intelligence for Prostate Cancer Imaging A Balanced Alternative to Deep Learning and Radiomics

被引:2
|
作者
Kaneko, Masatomo [1 ,2 ,3 ,4 ]
Magoulianitis, Vasileios [5 ]
Ramacciotti, Lorenzo Storino [1 ,2 ,3 ]
Raman, Alex [6 ]
Paralkar, Divyangi [1 ,2 ,3 ]
Chen, Andrew [1 ,2 ,3 ]
Chu, Timothy N. [1 ,2 ,3 ]
Yang, Yijing [5 ]
Xue, Jintang [5 ]
Yang, Jiaxin [5 ]
Liu, Jinyuan [5 ]
Jadvar, Donya S. [7 ]
Gill, Karanvir [1 ,2 ,3 ]
Cacciamani, Giovanni E. [1 ,2 ,3 ,8 ]
Nikias, Chrysostomos L. [5 ]
Duddalwar, Vinay [8 ]
Kuo, C-C. Jay [5 ]
Gill, Inderbir S. [1 ,2 ]
Abreu, Andre Luis [1 ,2 ,3 ,8 ,9 ]
机构
[1] Univ Southern Calif, USC Inst Urol, Los Angeles, CA USA
[2] Univ Southern Calif, Keck Sch Med, Catherine & Joseph Aresty Dept Urol, Los Angeles, CA USA
[3] USC Inst Urol, Focal Therapy & Artificial Intelligence Prostate C, Ctr Image Guided Surg, Los Angeles, CA USA
[4] Kyoto Prefectural Univ Med, Grad Sch Med Sci, Dept Urol, Kyoto, Japan
[5] Univ Southern Calif, Ming Hsieh Dept Elect & Comp Engn, Los Angeles, CA USA
[6] Western Univ Hlth Sci, Pomona, CA USA
[7] Univ Southern Calif, Dornsife Sch Letters & Sci, Los Angeles, CA USA
[8] Univ Southern Calif, Keck Sch Med, Dept Radiol, Los Angeles, CA USA
[9] 1441 Eastlake Ave, Suite 7416, Los Angeles, CA 90089 USA
关键词
Prostate cancer; Prostate biopsy; Magnetic resonance imaging; Artificial intelligence; Machine learning; Radiomics; Deep learning; Computer vision; U-NET; MRI; SEGMENTATION; ALGORITHMS;
D O I
10.1016/j.ucl.2023.08.001
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Prostate MRI is an area where the application of AI has shown promising results in recent years. Several AI systems have been developed to automatically analyze prostate MRI images for prostate segmentation, cancer detection, and region characterization, thereby assisting clinicians in their decision-making process. The current trend in PCa imaging AI is DL, but this approach suffers from the black box issue and excessive energy consumption. Therefore, next-generation non-DL AI models such as GL that can achieve high accuracy while still being explainable and sustainable are desired. To prepare for the coming AI era, physicians must be familiar with imaging AI for PCa diagnosis.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [41] Artificial intelligence and machine learning in oncologic imaging
    Kleesiek, Jens
    Murray, Jacob M.
    Strack, Christian
    Prinz, Sebastian
    Kaissis, Georgios
    Braren, Rickmer
    PATHOLOGE, 2020, 41 (06): : 649 - 658
  • [42] Artificial intelligence and machine learning in oncologic imaging
    Kleesiek, Jens
    Murray, Jacob M.
    Kaissis, Georgios
    Braren, Rickmer
    ONKOLOGE, 2020, 26 (01): : 60 - 65
  • [43] The use of artificial intelligence, machine learning and deep learning in oncologic histopathology
    Sultan, Ahmed S.
    Elgharib, Mohamed A.
    Tavares, Tiffany
    Jessri, Maryam
    Basile, John R.
    JOURNAL OF ORAL PATHOLOGY & MEDICINE, 2020, 49 (09) : 849 - 856
  • [45] Artificial intelligence, machine learning and deep learning in advanced robotics, a review
    Soori M.
    Arezoo B.
    Dastres R.
    Cognitive Robotics, 2023, 3 : 54 - 70
  • [46] Artificial Intelligence in Optical Communications: From Machine Learning to Deep Learning
    Wang, Danshi
    Zhang, Min
    FRONTIERS IN COMMUNICATIONS AND NETWORKS, 2021, 2
  • [47] Radiomics, machine learning, and artificial intelligence—what the neuroradiologist needs to know
    Matthias W. Wagner
    Khashayar Namdar
    Asthik Biswas
    Suranna Monah
    Farzad Khalvati
    Birgit B. Ertl-Wagner
    Neuroradiology, 2021, 63 : 1957 - 1967
  • [48] A deep learning masked segmentation alternative to manual segmentation in biparametric MRI prostate cancer radiomics
    Bleker, Jeroen
    Kwee, Thomas C.
    Rouw, Dennis
    Roest, Christian
    Borstlap, Jaap
    de Jong, Igle Jan
    Dierckx, Rudi A. J. O.
    Huisman, Henkjan
    Yakar, Derya
    EUROPEAN RADIOLOGY, 2022, 32 (09) : 6526 - 6535
  • [49] Artificial intelligence, machine (deep) learning and radio(geno)mics: definitions and nuclear medicine imaging applications
    Dimitris Visvikis
    Catherine Cheze Le Rest
    Vincent Jaouen
    Mathieu Hatt
    European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46 : 2630 - 2637
  • [50] Oncologic Applications of Artificial Intelligence and Deep Learning Methods in CT Spine Imaging-A Systematic Review
    Ong, Wilson
    Lee, Aric
    Tan, Wei Chuan
    Fong, Kuan Ting Dominic
    Lai, Daoyong David
    Tan, Yi Liang
    Low, Xi Zhen
    Ge, Shuliang
    Makmur, Andrew
    Ong, Shao Jin
    Ting, Yong Han
    Tan, Jiong Hao
    Kumar, Naresh
    Hallinan, James Thomas Patrick Decourcy
    CANCERS, 2024, 16 (17)