The Novel Green Learning Artificial Intelligence for Prostate Cancer Imaging A Balanced Alternative to Deep Learning and Radiomics

被引:2
|
作者
Kaneko, Masatomo [1 ,2 ,3 ,4 ]
Magoulianitis, Vasileios [5 ]
Ramacciotti, Lorenzo Storino [1 ,2 ,3 ]
Raman, Alex [6 ]
Paralkar, Divyangi [1 ,2 ,3 ]
Chen, Andrew [1 ,2 ,3 ]
Chu, Timothy N. [1 ,2 ,3 ]
Yang, Yijing [5 ]
Xue, Jintang [5 ]
Yang, Jiaxin [5 ]
Liu, Jinyuan [5 ]
Jadvar, Donya S. [7 ]
Gill, Karanvir [1 ,2 ,3 ]
Cacciamani, Giovanni E. [1 ,2 ,3 ,8 ]
Nikias, Chrysostomos L. [5 ]
Duddalwar, Vinay [8 ]
Kuo, C-C. Jay [5 ]
Gill, Inderbir S. [1 ,2 ]
Abreu, Andre Luis [1 ,2 ,3 ,8 ,9 ]
机构
[1] Univ Southern Calif, USC Inst Urol, Los Angeles, CA USA
[2] Univ Southern Calif, Keck Sch Med, Catherine & Joseph Aresty Dept Urol, Los Angeles, CA USA
[3] USC Inst Urol, Focal Therapy & Artificial Intelligence Prostate C, Ctr Image Guided Surg, Los Angeles, CA USA
[4] Kyoto Prefectural Univ Med, Grad Sch Med Sci, Dept Urol, Kyoto, Japan
[5] Univ Southern Calif, Ming Hsieh Dept Elect & Comp Engn, Los Angeles, CA USA
[6] Western Univ Hlth Sci, Pomona, CA USA
[7] Univ Southern Calif, Dornsife Sch Letters & Sci, Los Angeles, CA USA
[8] Univ Southern Calif, Keck Sch Med, Dept Radiol, Los Angeles, CA USA
[9] 1441 Eastlake Ave, Suite 7416, Los Angeles, CA 90089 USA
关键词
Prostate cancer; Prostate biopsy; Magnetic resonance imaging; Artificial intelligence; Machine learning; Radiomics; Deep learning; Computer vision; U-NET; MRI; SEGMENTATION; ALGORITHMS;
D O I
10.1016/j.ucl.2023.08.001
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Prostate MRI is an area where the application of AI has shown promising results in recent years. Several AI systems have been developed to automatically analyze prostate MRI images for prostate segmentation, cancer detection, and region characterization, thereby assisting clinicians in their decision-making process. The current trend in PCa imaging AI is DL, but this approach suffers from the black box issue and excessive energy consumption. Therefore, next-generation non-DL AI models such as GL that can achieve high accuracy while still being explainable and sustainable are desired. To prepare for the coming AI era, physicians must be familiar with imaging AI for PCa diagnosis.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [1] Artificial intelligence in multiparametric prostate cancer imaging with focus on deep-learning methods
    Wildeboer, Rogier R.
    van Sloun, Ruud J. G.
    Wijkstra, Hessel
    Mischi, Massimo
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2020, 189
  • [2] Artificial intelligence with deep learning in nuclear medicine and radiology
    Decuyper, Milan
    Maebe, Jens
    Van Holen, Roel
    Vandenberghe, Stefaan
    EJNMMI PHYSICS, 2021, 8 (01)
  • [3] Editorial: Novel Methods for Oncologic Imaging Analysis: Radiomics, Machine Learning, and Artificial Intelligence
    Xu, Hanyue
    Deng, Lei
    Tian, Rong
    Ma, Xuelei
    FRONTIERS IN ONCOLOGY, 2021, 11
  • [4] Artificial intelligence: Deep learning in oncological radiomics and challenges of interpretability and data harmonization
    Papadimitroulas, Panagiotis
    Brocki, Lennart
    Chung, Neo Christopher
    Marchadour, Wistan
    Vermet, Franck
    Gaubert, Laurent
    Eleftheriadis, Vasilis
    Plachouris, Dimitris
    Visvikis, Dimitris
    Kagadis, George C.
    Hatt, Mathieu
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2021, 83 : 108 - 121
  • [5] Deep learning-based artificial intelligence for prostate cancer detection at biparametric MRI
    Mehralivand, Sherif
    Yang, Dong
    Harmon, Stephanie A.
    Xu, Daguang
    Xu, Ziyue
    Roth, Holger
    Masoudi, Samira
    Kesani, Deepak
    Lay, Nathan
    Merino, Maria J.
    Wood, Bradford J.
    Pinto, Peter A.
    Choyke, Peter L.
    Turkbey, Baris
    ABDOMINAL RADIOLOGY, 2022, 47 (04) : 1425 - 1434
  • [6] Deep learning-based artificial intelligence for prostate cancer detection at biparametric MRI
    Sherif Mehralivand
    Dong Yang
    Stephanie A. Harmon
    Daguang Xu
    Ziyue Xu
    Holger Roth
    Samira Masoudi
    Deepak Kesani
    Nathan Lay
    Maria J. Merino
    Bradford J. Wood
    Peter A. Pinto
    Peter L. Choyke
    Baris Turkbey
    Abdominal Radiology, 2022, 47 : 1425 - 1434
  • [7] Clinical Implications of Machine Learning, Artificial Intelligence, and Radiomics in Cardiac Imaging
    Brian Yum
    Andrew Adelsheimer
    Romina Tafreshi
    Raffi Hagopian
    Jiwon Kim
    Current Treatment Options in Cardiovascular Medicine, 2020, 22
  • [8] Clinical Implications of Machine Learning, Artificial Intelligence, and Radiomics in Cardiac Imaging
    Yum, Brian
    Adelsheimer, Andrew
    Tafreshi, Romina
    Hagopian, Raffi
    Kim, Jiwon
    CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE, 2020, 22 (11)
  • [9] The Evidence for Using Artificial Intelligence to Enhance Prostate Cancer MR Imaging
    Canellas, Rodrigo
    Kohli, Marc D.
    Westphalen, Antonio C.
    CURRENT ONCOLOGY REPORTS, 2023, 25 (04) : 243 - 250
  • [10] Artificial Intelligence, Machine Learning, and Deep Learning in the Diagnosis and Management of Hepatocellular Carcinoma
    Larrain, Carolina
    Torres-Hernandez, Alejandro
    Hewitt, Daniel Brock
    LIVERS, 2024, 4 (01): : 36 - 50