Comparative transcriptome analysis of different tissues of Solanum khasianum reveals candidate genes involved in steroidal glycoalkaloid biosynthesis

被引:0
|
作者
Zhang, Shuaishuai [1 ,2 ,3 ]
Shan, Tingyu [1 ,2 ,3 ]
Xu, Jingyao [1 ,2 ,3 ]
Zhao, Liqiang [1 ,2 ,3 ]
Wu, Jiawen [1 ,2 ,3 ,4 ]
机构
[1] Anhui Univ Chinese Med, Hefei 230038, Peoples R China
[2] Anhui Acad Chinese Med, Hefei 230038, Peoples R China
[3] Anhui Univ Chinese Med, Key Lab Xinan Med, Minist Educ, Hefei, Peoples R China
[4] Synerget Innovat Ctr Anhui Authent Chinese Med Qua, Hefei, Peoples R China
关键词
CHAIN REDUCTASE 2; CYCLOARTENOL SYNTHASE; LANOSTEROL SYNTHASE; SOLASODINE; EXPRESSION; ALKALOIDS; CLONING; PLANT;
D O I
10.1111/ppl.14010
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Fruits and leaves of Solanum khasianum C. B. Clarke have long been used as a common Chinese herbal medicine. Steroidal glycoalkaloids (SGAs), the main active ingredient in S. khasianum, exhibit various pharmacological effects. However, genes involved in the SGA biosynthetic pathway in S. khasianum have not yet been identified. Genes encoding potential key SGA biosynthesis enzymes were identified through comprehensive RNA sequencing analysis (RNA-seq) of S. khasianum leaves, stems, and fruits. A total of 123,704 unigenes were obtained, of which 109,775 (88.74%) were annotated in seven public databases. Among these, 54 unigenes potentially involved in SGA biosynthesis were identified. Additionally, 23,636 differentially expressed genes were identified by comparing gene expression levels among the fruits, stems, and leaves of S. khasianum. The structural characteristics and phylogenetic relationship of cycloartenol synthase involved in SGA biosynthesis were further analyzed. Solasodine constituent was detected by high-performance liquid chromatography. This is the first study to report the comparative transcriptome analysis of different tissues of S. khasianum that identifies valuable genes potentially involved in SGA biosynthesis in this species.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Comparative transcriptome analysis of Veratrum maackii and Veratrum nigrum reveals multiple candidate genes involved in steroidal alkaloid biosynthesis
    Wang, Dan
    Yu, Zhijing
    Guan, Meng
    Cai, Qinan
    Wei, Jia
    Ma, Pengda
    Xue, Zheyong
    Ma, Rui
    Oksman-Caldentey, Kirsi-Marja
    Rischer, Heiko
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [2] Comparative transcriptome analysis of Veratrum maackii and Veratrum nigrum reveals multiple candidate genes involved in steroidal alkaloid biosynthesis
    Dan Wang
    Zhijing Yu
    Meng Guan
    Qinan Cai
    Jia Wei
    Pengda Ma
    Zheyong Xue
    Rui Ma
    Kirsi-Marja Oksman-Caldentey
    Heiko Rischer
    Scientific Reports, 13
  • [3] Comparative transcriptome analysis of leaf, stem, and root tissues of Semiliquidambar cathayensis reveals candidate genes involved in terpenoid biosynthesis
    Tian, Xiaoming
    Yan, Lihong
    Jiang, Liyuan
    Xiang, Guangfeng
    Li, Gaofei
    Zhu, Lu
    Wu, Jia
    MOLECULAR BIOLOGY REPORTS, 2022, 49 (06) : 5585 - 5593
  • [4] Comparative transcriptome analysis of leaf, stem, and root tissues of Semiliquidambar cathayensis reveals candidate genes involved in terpenoid biosynthesis
    Xiaoming Tian
    Lihong Yan
    Liyuan Jiang
    Guangfeng Xiang
    Gaofei Li
    Lu Zhu
    Jia Wu
    Molecular Biology Reports, 2022, 49 : 5585 - 5593
  • [5] Comparative Transcriptome Analysis Reveals Candidate Genes Involved in Isoquinoline Alkaloid Biosynthesis in Stephania tetrandra
    Zhang, Yangyang
    Kang, Yun
    Xie, Hui
    Wang, Yaqin
    Li, Yaoting
    Huang, Jianming
    PLANTA MEDICA, 2020, 86 (17) : 1258 - 1268
  • [6] Transcriptome Analysis Reveals Candidate Genes Related to Anthocyanin Biosynthesis in Different Carrot Genotypes and Tissues
    Meng, Geng
    Clausen, Sabine K.
    Rasmussen, Soren K.
    PLANTS-BASEL, 2020, 9 (03):
  • [7] Comparative transcriptome analysis reveals candidate genes involved in anthocyanin biosynthesis in sweetpotato (Ipomoea batatas L.)
    Li, Qiang
    Kou, Meng
    Li, Chen
    Zhang, Yun-Gang
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2021, 158 : 508 - 517
  • [8] Comparative transcriptome analysis of roots, stems and leaves of Isodon amethystoides reveals candidate genes involved in Wangzaozins biosynthesis
    Zhao, Fenglan
    Sun, Mengchu
    Zhang, Wanjun
    Jiang, Chunli
    Teng, Jingtong
    Sheng, Wei
    Li, Mingzhi
    Zhang, Aimin
    Duan, Yongbo
    Xue, Jianping
    BMC PLANT BIOLOGY, 2018, 18
  • [9] Comparative transcriptome analysis of roots, stems and leaves of Isodon amethystoides reveals candidate genes involved in Wangzaozins biosynthesis
    Fenglan Zhao
    Mengchu Sun
    Wanjun Zhang
    Chunli Jiang
    Jingtong Teng
    Wei Sheng
    Mingzhi Li
    Aimin Zhang
    Yongbo Duan
    Jianping Xue
    BMC Plant Biology, 18
  • [10] Comparative transcriptome analysis of Monascus purpureus at different fermentation times revealed candidate genes involved in exopolysaccharide biosynthesis
    Xie, Liuming
    Xie, Jianhua
    Chen, XianXiang
    Tao, Xin
    Xie, Jiayan
    Shi, Xiaoyi
    Huang, Zhibing
    FOOD RESEARCH INTERNATIONAL, 2022, 160