Characterization of Almost η-Ricci-Yamabe Soliton and Gradient Almost η-Ricci-Yamabe Soliton on Almost Kenmotsu Manifolds

被引:0
|
作者
Mondal, Somnath [1 ]
Dey, Santu [2 ]
Bhattacharyya, Arindam [1 ]
机构
[1] Jadavpur Univ, Dept Math, Kolkata 700032, India
[2] Bidhan Chandra Coll, Dept Math, Asansol 713304, W Bengal, India
关键词
Ricci soliton; (kappa; mu)-almost Kenmotsu manifold; mu)'-almost Kenmotsu manifold; eta-Ricci-Yamabe soliton; 3-MANIFOLDS; CONTACT;
D O I
10.1007/s10114-023-2233-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The prime object in this article is to study an almost eta-Ricci-Yamabe soliton and gradient almost eta-Ricci-Yamabe soliton within the framework of almost Kenmotsu manifolds. It is shown that normal almost Kenmotsu manifold admitting an almost eta-Ricci-Yamabe soliton or gradient.Ricci-Yamabe soliton is locally isometric to hyperbolic space H2n+1 (-1). Next, we prove that if a (kappa, mu) almost Kenmotsu manifold admits an almost eta-Ricci-Yamabe soliton, then the manifold is eta-Einstein. Besides, we find the condition for non-normal almost Kenmotsu manifolds acknowledging gradient almost eta-Ricci-Yamabe soliton. Moreover, an almost eta-Ricci-Yamabe soliton on (kappa, mu)'-almost Kenmotsu manifold has been studied. Lastly, we construct an example of a gradient almost eta-RicciYamabe soliton on a 3-dimensional Kenmotsu manifold.
引用
收藏
页码:728 / 748
页数:21
相关论文
共 50 条
  • [1] Characterization of Almost η-Ricci–Yamabe Soliton and Gradient Almost η-Ricci–Yamabe Soliton on Almost Kenmotsu Manifolds
    Somnath Mondal
    Santu Dey
    Arindam Bhattacharyya
    Acta Mathematica Sinica, English Series, 2023, 39 : 728 - 748
  • [2] Characterization of Almost η-Ricci–Yamabe Soliton and Gradient Almost η-Ricci–Yamabe Soliton on Almost Kenmotsu Manifolds
    Somnath MONDAL
    Santu DEY
    Arindam BHATTACHARYYA
    ActaMathematicaSinica,EnglishSeries, 2023, (04) : 728 - 748
  • [3] On almost generalized gradient Ricci-Yamabe soliton
    Kim, Byung Hak
    Choi, Jin Hyuk
    Lee, Sang Deok
    FILOMAT, 2024, 38 (11) : 3825 - 3837
  • [4] Almost Ricci-Yamabe solitons on Almost Kenmotsu manifolds
    Khatri, Mohan
    Singh, Jay Prakash
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (08)
  • [5] Ricci almost soliton and almost Yamabe soliton on Kenmotsu manifold
    Ghosh, Amalendu
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (08)
  • [6] On Almost Kenmotsu Manifolds admitting Conformal Ricci-Yamabe Solitons
    Singh, Jay Prakash
    Zosangzuala, Chhakchhuak
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2025, 43 : 23 - 23
  • [7] Almost Ricci-Yamabe Solitons in f-Kenmotsu Manifolds
    Shivaprasanna, G. S.
    Rajendra, R.
    Reddy, P. Siva Kota
    Somashekhara, G.
    Pavithra, M.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2025, 43
  • [8] Ricci-Yamabe solitons on (κ, μ)-almost coKahler manifolds
    Mandal, Tarak
    AFRIKA MATEMATIKA, 2022, 33 (02)
  • [9] Ricci-Yamabe Solitons and Gradient Ricci-Yamabe Solitons on Kenmotsu 3-manifolds
    Sardar, Arpan
    Sarkar, Avijit
    KYUNGPOOK MATHEMATICAL JOURNAL, 2021, 61 (04): : 813 - 822
  • [10] Isometries on almost Ricci-Yamabe solitons
    Khatri, Mohan
    Zosangzuala, C.
    Singh, Jay Prakash
    ARABIAN JOURNAL OF MATHEMATICS, 2023, 12 (01) : 127 - 138