Nonexistence and rigidity of spacelike mean curvature flow solitons immersed in a GRW spacetime

被引:2
作者
Freitas, Allan [1 ]
de Lima, Henrique F. [2 ]
Santos, Marcio S. [1 ]
Sindeaux, Joyce S. [1 ]
机构
[1] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, Paraiba, Brazil
[2] Univ Fed Campina Grande, Dept Matemat, BR-58429970 Campina Grande, Paraiba, Brazil
关键词
Generalized Robertson-Walker spacetimes; Spacelike mean curvature flow solitons; Trapped submanifolds; Higher-order mean curvatures; GRAVITATIONAL COLLAPSE; TRAPPED SURFACES; 1ST EIGENVALUE; HYPERSURFACES; SUBMANIFOLDS; UNIQUENESS; LAPLACIAN; GRAPHS;
D O I
10.1007/s10455-022-09879-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the nonexistence and rigidity of an important class of particular cases of trapped submanifolds, more precisely, n-dimensional spacelike mean curvature flow solitons related to the closed conformal timelike vector field K = f (t) partial derivative(t) (t is an element of I subset of R) which is globally defined on an (n + p + 1)-dimensional generalized Robertson-Walker (GRW) spacetime -I x(f) Mn+p with warping function f is an element of C-infinity (I) and Riemannian fiber Mn+p, via applications of suitable generalized maximum principles and under certain constraints on f and on the curvatures of Mn+p. In codimension 1, we also obtain new Calabi-Bernstein-type results concerning the spacelike mean curvature flow soliton equation in a GRW spacetime.
引用
收藏
页数:35
相关论文
共 36 条
[1]   New examples of entire maximal graphs in H2 x R1 [J].
Albujer, Alma L. .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2008, 26 (04) :456-462
[2]   Rigidity of complete spacelike hypersurfaces in spatially weighted generalized Robertson-Walker spacetimes [J].
Albujer, Alma L. ;
de Lima, Henrique F. ;
Oliveira, Arlandson M. ;
Velasquez, Marco Antonio L. .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2017, 50 :140-154
[3]   A maximum principle at infinity with applications to geometric vector fields [J].
Alias, L. J. ;
Caminha, A. ;
do Nascimento, F. Y. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 474 (01) :242-247
[4]   UNIQUENESS OF COMPLETE SPACELIKE HYPERSURFACES OF CONSTANT MEAN-CURVATURE IN GENERALIZED ROBERTSON-WALKER SPACETIMES [J].
ALIAS, LJ ;
ROMERO, A ;
SANCHEZ, M .
GENERAL RELATIVITY AND GRAVITATION, 1995, 27 (01) :71-84
[5]   Uniqueness of spacelike hypersurfaces with constant higher order mean curvature in generalized Robertson-Walker spacetimes [J].
Alias, Luis J. ;
Colares, A. Gervasio .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2007, 143 :703-729
[6]   A maximum principle related to volume growth and applications [J].
Alias, Luis J. ;
Caminha, Antonio ;
do Nascimento, F. Yure .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2021, 200 (04) :1637-1650
[7]   Mean Curvature Flow Solitons in the Presence of Conformal Vector Fields [J].
Alias, Luis J. ;
de Lira, Jorge H. ;
Rigoli, Marco .
JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (02) :1466-1529
[8]   On the rigidity of complete spacelike hypersurfaces immersed in a generalized Robertson-Walker spacetime [J].
Alias, Luis J. ;
Colares, Antonio Gervasio ;
de Lima, Henrique F. .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2013, 44 (02) :195-217
[9]   Spacelike translating solitons in Lorentzian product spaces: Nonexistence, Calabi-Bernstein type results and examples [J].
Batista, Marcio ;
de Lima, Henrique F. .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2022, 24 (08)
[10]   TRAPPED SURFACES IN VACUUM SPACETIMES [J].
BEIG, R ;
MURCHADHA, NO .
CLASSICAL AND QUANTUM GRAVITY, 1994, 11 (02) :419-430