How AI May Transform Musculoskeletal Imaging

被引:22
作者
Guermazi, Ali [1 ,2 ]
Omoumi, Patrick [3 ,4 ]
Tordjman, Mickael [5 ,6 ]
Fritz, Jan [7 ]
Kijowski, Richard [7 ]
Regnard, Nor-Eddine [8 ,9 ,10 ]
Carrino, John [11 ,12 ]
Kahn, Charles E., Jr. [13 ,14 ]
Knoll, Florian [15 ,17 ]
Rueckert, Daniel [18 ,19 ]
Roemer, Frank W. [1 ,16 ]
Hayashi, Daichi [1 ,20 ]
机构
[1] Boston Univ, Sch Med, Dept Radiol, Boston, MA 02215 USA
[2] VA Boston Healthcare Syst, Dept Radiol, 1400 VFW Pkwy,Suite 1B105, West Roxbury, MA 02132 USA
[3] Lausanne Univ Hosp, Dept Radiol, Lausanne, Switzerland
[4] Univ Lausanne, Lausanne, Switzerland
[5] Hop Hotel Dieu, Dept Radiol, Paris, France
[6] Univ Paris Cite, Paris, France
[7] NYU, Grossman Sch Med, Dept Radiol, New York, NY USA
[8] Gleamer, Paris, France
[9] Clin Mousseau Ramsay Sante, Clin Mousseau Ramsay St, Evry, France
[10] Pole Med Senart, Lieusaint, France
[11] Hosp Special Surg, Dept Radiol & Imaging, New York, NY USA
[12] Weill Cornell Med, New York, NY USA
[13] Univ Penn, Dept Radiol, Philadelphia, PA USA
[14] Univ Penn, Inst Biomed Informat, Philadelphia, PA USA
[15] Univ Klinikum Erlangen, Dept Artificial Intelligence Biomed Engn, Erlangen, Germany
[16] Univ Klinikum Erlangen, Dept Radiol, Erlangen, Germany
[17] Friedrich Alexander Univ Erlangen Nurnberg, Erlangen, Germany
[18] Tech Univ Munich, Klinikum Rechts Isar, Sch Med & Computat Informat, Munich, Germany
[19] Imperial Coll London, Dept Comp, London, England
[20] Tufts Univ, Tufts Med Ctr, Sch Med, Dept Radiol, Boston, MA USA
基金
“创新英国”项目; 英国工程与自然科学研究理事会; 英国惠康基金;
关键词
METAL ARTIFACT CORRECTION; ARTIFICIAL-INTELLIGENCE; SIMULTANEOUS MULTISLICE; HIP-ARTHROPLASTY; DECISION-SUPPORT; KNEE MRI; RADIOLOGY; DIAGNOSIS; WORKFLOW; OPTIMIZATION;
D O I
10.1148/radiol.230764
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
While musculoskeletal imaging volumes are increasing, there is a relative shortage of subspecialized musculoskeletal radiologists to interpret the studies. Will artificial intelligence (AI) be the solution? For AI to be the solution, the wide implementation of AI-supported data acquisition methods in clinical practice requires establishing trusted and reliable results. This implementation will demand close collaboration between core AI researchers and clinical radiologists. Upon successful clinical implementation, a wide variety of AI-based tools can improve the musculoskeletal radiologist's workflow by triaging imaging examinations, helping with image interpretation, and decreasing the reporting time. Additional AI applications may also be helpful for business, education, and research purposes if successfully integrated into the daily practice of musculoskeletal radiology. The question is not whether AI will replace radiologists, but rather how musculoskeletal radiologists can take advantage of AI to enhance their expert capabilities.
引用
收藏
页数:13
相关论文
共 129 条
[21]   Super-resolution musculoskeletal MRI using deep learning [J].
Chaudhari, Akshay S. ;
Fang, Zhongnan ;
Kogan, Feliks ;
Wood, Jeff ;
Stevens, Kathryn J. ;
Gibbons, Eric K. ;
Lee, Jin Hyung ;
Gold, Garry E. ;
Hargreaves, Brian A. .
MAGNETIC RESONANCE IN MEDICINE, 2018, 80 (05) :2139-2154
[22]   Rapid lumbar MRI protocol using 3D imaging and deep learning reconstruction [J].
Chazen, J. Levi ;
Tan, Ek Tsoon ;
Fiore, Jake ;
Nguyen, Joseph T. ;
Sun, Simon ;
Sneag, Darryl B. .
SKELETAL RADIOLOGY, 2023, 52 (07) :1331-1338
[23]   Current applications and future directions of deep learning in musculoskeletal radiology [J].
Chea, Pauley ;
Mandell, Jacob C. .
SKELETAL RADIOLOGY, 2020, 49 (02) :183-197
[24]   Current Applications and Future Impact of Machine Learning in Radiology [J].
Choy, Garry ;
Khalilzadeh, Omid ;
Michalski, Mark ;
Do, Synho ;
Samir, Anthony E. ;
Pianykh, Oleg S. ;
Geis, J. Raymond ;
Pandharipande, Pari V. ;
Brink, James A. ;
Dreyer, Keith J. .
RADIOLOGY, 2018, 288 (02) :318-328
[25]   Quantification in Musculoskeletal Imaging Using Computational Analysis and Machine Learning: Segmentation and Radiomics [J].
Cuadra, Meritxell Bach ;
Favre, Julien ;
Omoumi, Patrick .
SEMINARS IN MUSCULOSKELETAL RADIOLOGY, 2020, 24 (01) :50-64
[26]   Evaluation of a Weightbearing CT Artificial Intelligence-Based Automatic Measurement for the M1-M2 Intermetatarsal Angle in Hallux Valgus [J].
Day, Jonathan ;
de Cesar Netto, Cesar ;
Richter, Martinus ;
Mansur, Nacime Salomao ;
Fernando, Celine ;
Deland, Jonathan T. ;
Ellis, Scott J. ;
Lintz, Francois .
FOOT & ANKLE INTERNATIONAL, 2021, 42 (11) :1502-1509
[27]   Five-minute Five-Sequence Knee MRI Using Combined Simultaneous Multislice and Parallel Imaging Acceleration: Comparison with 10-minute Parallel Imaging Knee MRI [J].
Del Grande, Filippo ;
Rashidi, Ali ;
Luna, Rodrigo ;
Delcogliano, Marco ;
Stern, Steven E. ;
Dalili, Danoob ;
Fritz, Jan .
RADIOLOGY, 2021, 299 (03) :635-646
[28]   Assessment of an AI Aid in Detection of Adult Appendicular Skeletal Fractures by Emergency Physicians and Radiologists: A Multicenter Cross-sectiona Diagnostic Study [J].
Duron, Loic ;
Ducarouge, Alexis ;
Gillibert, Andre ;
Laine, Julia ;
Allouche, Christian ;
Cherel, Nicolas ;
Zhang, Zekun ;
Nitche, Nicolas ;
Lacave, Elise ;
Pourchot, Alois ;
Felter, Adrien ;
Lassalle, Louis ;
Regnard, Nor-Eddine ;
Feydy, Antoine .
RADIOLOGY, 2021, 300 (01) :120-129
[29]   Artificial Intelligence-Based CT Imaging on Diagnosis of Patients with Lumbar Disc Herniation by Scalpel Treatment [J].
Fan, Xiaofei ;
Qiao, Xiaoming ;
Wang, Zhisheng ;
Jiang, Luetao ;
Liu, Yue ;
Sun, Qingshan .
COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
[30]   Radiomics of Musculoskeletal Sarcomas: A Narrative Review [J].
Fanciullo, Cristiana ;
Gitto, Salvatore ;
Carlicchi, Eleonora ;
Albano, Domenico ;
Messina, Carmelo ;
Sconfienza, Luca Maria .
JOURNAL OF IMAGING, 2022, 8 (02)