The Ethylene Biosynthetic Enzymes, 1-Aminocyclopropane-1-Carboxylate (ACC) Synthase (ACS) and ACC Oxidase (ACO): The Less Explored Players in Abiotic Stress Tolerance

被引:19
|
作者
Khan, Sheen [1 ]
Alvi, Ameena Fatima [1 ]
Saify, Sadaf [1 ]
Iqbal, Noushina [2 ]
Khan, Nafees A. [1 ]
机构
[1] Aligarh Muslim Univ, Dept Bot, Plant Physiol & Biochem Lab, Aligarh 202002, India
[2] Jamia Hamdard, Dept Bot, New Delhi 110062, India
关键词
ethylene biosynthesis; ACS and ACO regulation; abiotic stress; nutrient starvation; growth and development; ACID SYNTHASE; TOMATO FRUIT; ARABIDOPSIS-THALIANA; PHOSPHATE STARVATION; TRANSCRIPTION FACTOR; PROTEIN-KINASE; MESSENGER-RNA; PLANT HORMONE; GENE FAMILY; EXPRESSION CHARACTERISTICS;
D O I
10.3390/biom14010090
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Ethylene is an essential plant hormone, critical in various physiological processes. These processes include seed germination, leaf senescence, fruit ripening, and the plant's response to environmental stressors. Ethylene biosynthesis is tightly regulated by two key enzymes, namely 1-aminocyclopropane-1-carboxylate synthase (ACS) and 1-aminocyclopropane-1-carboxylate oxidase (ACO). Initially, the prevailing hypothesis suggested that ACS is the limiting factor in the ethylene biosynthesis pathway. Nevertheless, accumulating evidence from various studies has demonstrated that ACO, under specific circumstances, acts as the rate-limiting enzyme in ethylene production. Under normal developmental processes, ACS and ACO collaborate to maintain balanced ethylene production, ensuring proper plant growth and physiology. However, under abiotic stress conditions, such as drought, salinity, extreme temperatures, or pathogen attack, the regulation of ethylene biosynthesis becomes critical for plants' survival. This review highlights the structural characteristics and examines the transcriptional, post-transcriptional, and post-translational regulation of ACS and ACO and their role under abiotic stress conditions. Reviews on the role of ethylene signaling in abiotic stress adaptation are available. However, a review delineating the role of ACS and ACO in abiotic stress acclimation is unavailable. Exploring how particular ACS and ACO isoforms contribute to a specific plant's response to various abiotic stresses and understanding how they are regulated can guide the development of focused strategies. These strategies aim to enhance a plant's ability to cope with environmental challenges more effectively.
引用
收藏
页数:34
相关论文
共 50 条