Dynamic parameter identification and adaptive control with trajectory scaling for robot-environment interaction

被引:1
|
作者
Song, Ke [1 ]
Hu, Heyu [2 ]
机构
[1] Xian Aeronaut Univ, Elect Engn Inst, Xian, Peoples R China
[2] Zhongyuan Univ Technol, Zhengzhou, Peoples R China
来源
PLOS ONE | 2023年 / 18卷 / 07期
关键词
INERTIAL PARAMETERS; IMPEDANCE CONTROL; COLLISION DETECTION; ADMITTANCE CONTROL; MINIMUM SET; MANIPULATOR; CONTACT; FORCE;
D O I
10.1371/journal.pone.0287484
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
To improve the force/position control performance of robots in contact with the environment, this paper proposes a control scheme comprising dynamic parameter identification, trajectory scaling, and computed-torque control based on adaptive parameter estimation. Based on the Newton-Euler method, the dynamic equation and its regression matrix is obtained, which is helpful to reduce the order of the model. Subsequently, the least-square method is implemented to calculate the values of the basic parameters of the dynamics. The identified dynamic parameters are used as initial values in the adaptive parameter estimation to obtain the torque, and trajectory scaling is applied to control the contact force between the robot and the environment. Finally, the dynamic parameter identification method and control algorithm are verified by conducting a simulation. The results show that the comprehensive application can help improve the control performance of robots.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Learning Robot-Environment Interaction Using Echo State Networks
    Oubbati, Mohamed
    Kord, Bahram
    Palm, Guenther
    FROM ANIMALS TO ANIMATS 11, 2010, 6226 : 501 - 510
  • [32] Advanced Methods for Robot-Environment Interaction towards an Industrial Robot Aware of Its Volume
    Romanelli, Fabrizio
    JOURNAL OF ROBOTICS, 2011, 2011
  • [33] Neural Networks Enhanced Optimal Admittance Control of Robot-Environment Interaction Using Reinforcement Learning
    Peng, Guangzhu
    Chen, C. L. Philip
    Yang, Chenguang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (09) : 4551 - 4561
  • [34] Compliant Motion Adaptation with Dynamical System during Robot-Environment Interaction
    Huang, Haohui
    Yang, Chenguang
    Su, Chun-Yi
    2020 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2020, : 2033 - 2038
  • [35] Optimal robot-environment interaction using inverse differential Riccati equation
    Rahimi Nohooji, Hamed
    Howard, Ian
    Cui, Lei
    ASIAN JOURNAL OF CONTROL, 2020, 22 (04) : 1401 - 1410
  • [36] Model-based dynamic feedback control of a planar soft robot: trajectory tracking and interaction with the environment
    Della Santina, Cosimo
    Katzschmann, Robert K.
    Bicchi, Antonio
    Rus, Daniela
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2020, 39 (04): : 490 - 513
  • [37] Analysis of Robot-Environment Interaction Modes in Anguilliform Locomotion of a New Soft Eel Robot
    Sayahkarajy, Mostafa
    Witte, Hartmut
    ACTUATORS, 2024, 13 (10)
  • [38] Robot dynamic model: freudenstein-based optimal trajectory and parameter identification
    Ogbemhe, John
    Mpofu, Khumbulani
    Mokakabye, Mabolaya
    COGENT ENGINEERING, 2022, 9 (01):
  • [39] Asymmetric constrained control scheme design with discrete output feedback in unknown robot-environment interaction system
    Yu, Xinyi
    Luo, Huizhen
    Shi, Shuanwu
    Wei, Yan
    Ou, Linlin
    ROBOTICA, 2023, 41 (01) : 105 - 125
  • [40] Enhancing Robot-Environment Physical Interaction via Optimal Impedance Profiles
    Averta, Giuseppe
    Hogan, Neville
    2020 8TH IEEE RAS/EMBS INTERNATIONAL CONFERENCE FOR BIOMEDICAL ROBOTICS AND BIOMECHATRONICS (BIOROB), 2020, : 973 - 980