Dynamic parameter identification and adaptive control with trajectory scaling for robot-environment interaction

被引:1
|
作者
Song, Ke [1 ]
Hu, Heyu [2 ]
机构
[1] Xian Aeronaut Univ, Elect Engn Inst, Xian, Peoples R China
[2] Zhongyuan Univ Technol, Zhengzhou, Peoples R China
来源
PLOS ONE | 2023年 / 18卷 / 07期
关键词
INERTIAL PARAMETERS; IMPEDANCE CONTROL; COLLISION DETECTION; ADMITTANCE CONTROL; MINIMUM SET; MANIPULATOR; CONTACT; FORCE;
D O I
10.1371/journal.pone.0287484
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
To improve the force/position control performance of robots in contact with the environment, this paper proposes a control scheme comprising dynamic parameter identification, trajectory scaling, and computed-torque control based on adaptive parameter estimation. Based on the Newton-Euler method, the dynamic equation and its regression matrix is obtained, which is helpful to reduce the order of the model. Subsequently, the least-square method is implemented to calculate the values of the basic parameters of the dynamics. The identified dynamic parameters are used as initial values in the adaptive parameter estimation to obtain the torque, and trajectory scaling is applied to control the contact force between the robot and the environment. Finally, the dynamic parameter identification method and control algorithm are verified by conducting a simulation. The results show that the comprehensive application can help improve the control performance of robots.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Model Predictive Position and Force Trajectory Tracking Control for Robot-Environment Interaction
    Gold, Tobias
    Voelz, Andreas
    Graichen, Knut
    2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 7397 - 7402
  • [2] Research of a Self-adaptive Robot Impedance Control Method for Robot-Environment Interaction
    Li, Zhengyi
    Yang, Dandan
    Zhou, Hui
    Cao, Huimin
    ROBOT INTELLIGENCE TECHNOLOGY ANDAPPLICATIONS 3, 2015, 345 : 221 - 238
  • [3] Neural Networks Enhanced Adaptive Admittance Control of Optimized Robot-Environment Interaction
    Yang, Chenguang
    Peng, Guangzhu
    Li, Yanan
    Cui, Rongxin
    Cheng, Long
    Li, Zhijun
    IEEE TRANSACTIONS ON CYBERNETICS, 2019, 49 (07) : 2568 - 2579
  • [4] Robot-environment dynamic interaction survey and future trends
    M. Vukobratovic
    Journal of Computer and Systems Sciences International, 2010, 49 : 329 - 342
  • [5] Optimal Robot-Environment Interaction Under Broad Fuzzy Neural Adaptive Control
    Huang, Haohui
    Yang, Chenguang
    Chen, C. L. Philip
    IEEE TRANSACTIONS ON CYBERNETICS, 2021, 51 (07) : 3824 - 3835
  • [6] Robot-environment dynamic interaction survey and future trends
    Vukobratovic, M.
    JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 2010, 49 (02) : 329 - 342
  • [7] Adaptive dynamic programming-based controller with admittance adaptation for robot-environment interaction
    Zhan, Hong
    Huang, Dianye
    Chen, Zhaopeng
    Wang, Min
    Yang, Chenguang
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2020, 17 (03)
  • [8] Adaptive Admittance Control for Optimized Robot-Environment Interaction Without Restrictive Initial Conditions
    Li, Chengpeng
    Xu, Zuhua
    Zhao, Jun
    Ren, Qinyuan
    Song, Chunyue
    Wang, Dingwei
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2025,
  • [9] Optimal Control for Robot-Environment Interaction in Robotic Systems
    Dao Phuong Nam
    Nguyen Trung Nghia
    Bui Thi Hai Linh
    Nguyen Hong Quang
    NEXT GENERATION OF INTERNET OF THINGS, 2023, 445 : 501 - 507
  • [10] Learning impedance control for physical robot-environment interaction
    Li, Yanan
    Ge, Shuzhi Sam
    Yang, Chenguang
    INTERNATIONAL JOURNAL OF CONTROL, 2012, 85 (02) : 182 - 193