An Improved YOLOv5s-Based Agaricus bisporus Detection Algorithm

被引:9
|
作者
Chen, Chao [1 ,2 ]
Wang, Feng [1 ,2 ]
Cai, Yuzhe [1 ,2 ]
Yi, Shanlin [1 ,2 ]
Zhang, Baofeng [1 ,2 ]
机构
[1] Yangzhou Univ, Sch Mech Engn, Yangzhou 225127, Peoples R China
[2] Jiangsu Engn Ctr Modern Agr Machinery & Agron Tech, Yangzhou 225127, Peoples R China
来源
AGRONOMY-BASEL | 2023年 / 13卷 / 07期
关键词
mushroom detection; computer vision; center point positioning; diameter measurement; attention mechanism;
D O I
10.3390/agronomy13071871
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
This study aims to improve the Agaricus bisporus detection efficiency and performance of harvesting robots in the complex environment of the mushroom growing house. Based on deep learning networks, an improved YOLOv5s algorithm was proposed for accurate A. bisporus detection. First, A. bisporus images collected in situ from the mushroom growing house were preprocessed and augmented to construct a dataset containing 810 images, which were divided into the training and test sets in the ratio of 8:2. Then, by introducing the Convolutional Block Attention Module (CBAM) into the backbone network of YOLOv5s and adopting the Mosaic image augmentation technique in training, the detection accuracy and robustness of the algorithm were improved. The experimental results showed that the improved algorithm had a recognition accuracy of 98%, a single-image processing time of 18 ms, an A. bisporus center point locating error of 0.40%, and a diameter measuring error of 1.08%. Compared with YOLOv5s and YOLOv7, the YOLOv5s-CBAM has better performance in recognition accuracy, center positioning, and diameter measurement. Therefore, the proposed algorithm is capable of accurate A. bisporus detection in the complex environment of the mushroom growing house.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Traffic Sign Detection Algorithm Based on Improved YOLOv5-S
    Liu, Haibin
    Zhang, Youbing
    Zhou, Kui
    Zhang, Yufeng
    Lyu, Sheng
    Computer Engineering and Applications, 2024, 60 (05) : 200 - 209
  • [22] Road object detection algorithm based on improved YOLOv5s
    Zhou Qing
    Tan Gong-quan
    Yin Song-lin
    Li Yi-nian
    Wei Dan-qin
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2023, 38 (05) : 680 - 690
  • [23] Detection Algorithm of Recyclable Garbage Based on Improved YOLOv5s
    Luo Anneng
    Wan Haibin
    Si Zhiwei
    Qin Tuanfa
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (10)
  • [24] Elderly Fall Detection Algorithm Based on Improved YOLOv5s
    Luo, Zhongze
    Jia, Siying
    Niu, Hongjun
    Zhao, Yifu
    Zeng, Xiaoyu
    Dong, Guanghui
    INFORMATION TECHNOLOGY AND CONTROL, 2024, 53 (02): : 601 - 618
  • [25] Safety helmet detection algorithm based on improved YOLOv5s
    Zhao R.
    Liu H.
    Liu P.
    Lei Y.
    Li D.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2023, 49 (08): : 2050 - 2061
  • [26] Underwater trash detection algorithm based on improved YOLOv5s
    ChunMing Wu
    YiQian Sun
    TiaoJun Wang
    YaLi Liu
    Journal of Real-Time Image Processing, 2022, 19 : 911 - 920
  • [27] A colonic polyps detection algorithm based on an improved YOLOv5s
    Li, Jianjun
    Zhao, Jinhui
    Wang, Yifan
    Zhu, Jinhui
    Wei, Yanhong
    Zhu, Junjiang
    Li, Xiaolu
    Yan, Shubin
    Zhang, Qichun
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [28] A Forest Wildlife Detection Algorithm Based on Improved YOLOv5s
    Yang, Wenhan
    Liu, Tianyu
    Jiang, Ping
    Qi, Aolin
    Deng, Lexing
    Liu, Zelong
    He, Yuchen
    ANIMALS, 2023, 13 (19):
  • [29] YOlOv5s-ACE: Forest Fire Object Detection Algorithm Based on Improved YOLOv5s
    Wang, Jianan
    Wang, Changzhong
    Ding, Weiping
    Li, Cheng
    FIRE TECHNOLOGY, 2024, : 4023 - 4043
  • [30] HDS-YOLOv5: An improved safety harness hook detection algorithm based on YOLOv5s
    Chen, Mingju
    Lan, Zhongxiao
    Duan, Zhengxu
    Yi, Sihang
    Su, Qin
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (08) : 15476 - 15495