Discrete spectrum for group actions

被引:0
作者
Xu, Fang [1 ]
Xu, Leiye [2 ]
机构
[1] Anhui Agr Univ, Coll Econ & Technol, Hefei, Peoples R China
[2] Univ Sci & Technol China, Dept Math, Hefei, Peoples R China
来源
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL | 2023年 / 39卷 / 01期
关键词
Group actions; discrete spectrum; bounded complexity; DYNAMICS;
D O I
10.1080/14689367.2023.2236946
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study discrete spectrum of invariant measures for group actions. We show that an invariant measure has discrete spectrum if and only if it has finite max-mean-measure-complexity. As an application, we show that for countable discrete amenable group actions an invariant measure has discrete spectrum if and only if it has bounded mean-measure-complexity along any Folner sequence.
引用
收藏
页码:141 / 149
页数:9
相关论文
共 7 条
[1]  
Folner E., 1956, Math. Scand., V3, P243, DOI DOI 10.7146/MATH.SCAND.A-10442
[2]   Operator methods in classical mechanics, II [J].
Halmos, PR ;
von Neumann, J .
ANNALS OF MATHEMATICS, 1942, 43 :332-350
[3]   Bounded complexity, mean equicontinuity and discrete spectrum [J].
Huang, Wen ;
Li, Jian ;
Thouvenot, Jean-Paul ;
Xu, Leiye ;
Ye, Xiangdong .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2021, 41 (02) :494-533
[4]   Measure complexity and Mobius disjointness [J].
Huang, Wen ;
Wang, Zhiren ;
Ye, Xiangdong .
ADVANCES IN MATHEMATICS, 2019, 347 :827-858
[5]   Symbolic dynamics II Sturmian trajectories [J].
Morse, M ;
Hedlund, GA .
AMERICAN JOURNAL OF MATHEMATICS, 1940, 62 :1-42
[6]   Geometry and dynamics of admissible metrics in measure spaces [J].
Vershik, Anatoly M. ;
Zatitskiy, Pavel B. ;
Petrov, Fedor V. .
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2013, 11 (03) :379-400
[7]   DISCRETE SPECTRUM FOR AMENABLE GROUP ACTIONS [J].
Yu, Tao ;
Zhang, Guohua ;
Zhang, Ruifeng .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (12) :5871-5886