Jackson Differential Operator Associated with Generalized Mittag-Leffler Function

被引:4
|
作者
Attiya, Adel A. [1 ,2 ]
Yassen, Mansour F. [3 ,4 ]
Albaid, Abdelhamid [5 ]
机构
[1] Univ Hail, Coll Sci, Dept Math, Hail 81451, Saudi Arabia
[2] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
[3] Prince Sattam Bin Abdulaziz Univ, Coll Sci & Humanities Al Aflaj, Dept Math, Al Aflaj 11912, Saudi Arabia
[4] Damietta Univ, Fac Sci, Dept Math, New Damietta 34517, Egypt
[5] Univ Hail, Coll Sci, Dept Phys, Hail 81451, Saudi Arabia
关键词
Mittag-Leffler function; Jackson differential operator; quantum calculus; analytic functions; univalent functions; subordination relation; differential subordination; operators in geometric function theory; Fekete-Szego function; Gaussian hypergeometric function; CONIC DOMAINS; SUBCLASS; HARDY;
D O I
10.3390/fractalfract7050362
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Quantum calculus plays a significant role in many different branches such as quantum physics, hypergeometric series theory, and other physical phenomena. In our paper and using quantitative calculus, we introduce a new family of normalized analytic functions in the open unit disk, which relates to both the generalized Mittag-Leffler function and the Jackson differential operator. By using a differential subordination virtue, we obtain some important properties such as coefficient bounds and the Fekete-Szego problem. Some results that represent special cases of this family that have been studied before are also highlighted.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Exponential asymptotics of the Mittag-Leffler function
    Paris, RB
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2002, 458 (2028): : 3041 - 3052
  • [42] When is a Mittag-Leffler function a Nussbaum function?
    Li, Yan
    Chen, YangQuan
    AUTOMATICA, 2009, 45 (08) : 1957 - 1959
  • [43] A further extension of Mittag-Leffler function
    Maja Andrić
    Ghulam Farid
    Josip Pečarić
    Fractional Calculus and Applied Analysis, 2018, 21 : 1377 - 1395
  • [44] Asymptotics for a variant of the Mittag-Leffler function
    Gerhold, Stefan
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2012, 23 (06) : 397 - 403
  • [45] Integral Representation of the Mittag-Leffler Function
    Saenko, V. V.
    RUSSIAN MATHEMATICS, 2022, 66 (04) : 43 - 58
  • [46] On Mittag-Leffler type function and applications
    Saigo, M
    Kilbas, AA
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 1998, 7 (1-2) : 97 - 112
  • [47] Battery Modeling with Mittag-Leffler Function
    Abdelhafiz, Shahenda M.
    Fouda, Mohammed E.
    Radwan, Ahmed G.
    2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS 2024, 2024,
  • [48] On the Numerical Computation of the Mittag-Leffler Function
    Ortigueira, Manuel D.
    Lopes, Antonio M.
    Machado, Jose Tenreiro
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2019, 20 (06) : 725 - 736
  • [49] PARTIAL SUMS OF MITTAG-LEFFLER FUNCTION
    Bansal, Deepak
    Orhan, Halit
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2018, 12 (02): : 423 - 431
  • [50] Inequalities on a class of analytic functions defined by generalized Mittag-Leffler function
    Caglar, Murat
    Karthikeyan, K. R.
    Murugusundaramoorthy, G.
    FILOMAT, 2023, 37 (19) : 6277 - 6288