Jackson Differential Operator Associated with Generalized Mittag-Leffler Function

被引:4
|
作者
Attiya, Adel A. [1 ,2 ]
Yassen, Mansour F. [3 ,4 ]
Albaid, Abdelhamid [5 ]
机构
[1] Univ Hail, Coll Sci, Dept Math, Hail 81451, Saudi Arabia
[2] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
[3] Prince Sattam Bin Abdulaziz Univ, Coll Sci & Humanities Al Aflaj, Dept Math, Al Aflaj 11912, Saudi Arabia
[4] Damietta Univ, Fac Sci, Dept Math, New Damietta 34517, Egypt
[5] Univ Hail, Coll Sci, Dept Phys, Hail 81451, Saudi Arabia
关键词
Mittag-Leffler function; Jackson differential operator; quantum calculus; analytic functions; univalent functions; subordination relation; differential subordination; operators in geometric function theory; Fekete-Szego function; Gaussian hypergeometric function; CONIC DOMAINS; SUBCLASS; HARDY;
D O I
10.3390/fractalfract7050362
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Quantum calculus plays a significant role in many different branches such as quantum physics, hypergeometric series theory, and other physical phenomena. In our paper and using quantitative calculus, we introduce a new family of normalized analytic functions in the open unit disk, which relates to both the generalized Mittag-Leffler function and the Jackson differential operator. By using a differential subordination virtue, we obtain some important properties such as coefficient bounds and the Fekete-Szego problem. Some results that represent special cases of this family that have been studied before are also highlighted.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Laplace transform and the Mittag-Leffler function
    Teodoro, G. Sales
    de Oliveira, E. Capelas
    INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2014, 45 (04) : 595 - 604
  • [32] On the numerical computation of the Mittag-Leffler function
    Valerio, Duarte
    Machado, Jose Tenreiro
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (10) : 3419 - 3424
  • [33] A SUBCLASS OF ANALYTIC FUNCTIONS DEFINED BY USING MITTAG-LEFFLER FUNCTION
    Mahmood, Tahir
    Naeem, Muhammad
    Hussain, Saqib
    Khan, Shahid
    Altinkaya, Sahsene
    HONAM MATHEMATICAL JOURNAL, 2020, 42 (03): : 577 - 590
  • [34] Exponential asymptotics of the Mittag-Leffler function
    Wong, R
    Zhao, YQ
    CONSTRUCTIVE APPROXIMATION, 2002, 18 (03) : 355 - 385
  • [35] A FURTHER EXTENSION OF MITTAG-LEFFLER FUNCTION
    Andric, Maja
    Farid, Ghulam
    Pecaric, Josip
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (05) : 1377 - 1395
  • [36] A monotonicity property of the Mittag-Leffler function
    Alzer, Horst
    Kwong, Man Kam
    ACTA SCIENTIARUM MATHEMATICARUM, 2019, 85 (1-2): : 181 - 187
  • [37] A NEW EXTENSION OF THE MITTAG-LEFFLER FUNCTION
    Arshad, Muhammad
    Choi, Junesang
    Mubeen, Shahid
    Nisar, Kottakkaran Sooppy
    Rahman, Gauhar
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 33 (02): : 549 - 560
  • [38] Properties of the Mittag-Leffler relaxation function
    Berberan-Santos, MN
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2005, 38 (04) : 629 - 635
  • [39] Integral Representation of the Mittag-Leffler Function
    V. V. Saenko
    Russian Mathematics, 2022, 66 : 43 - 58
  • [40] Properties of the Mittag-Leffler Relaxation Function
    Mário N. Berberan-Santos
    Journal of Mathematical Chemistry, 2005, 38 : 629 - 635