Window-Based Filtering Aerosol Retrieval Algorithm of Fine-Scale Remote Sensing Images: A Case Using Sentinel-2 Data in Beijing Region

被引:0
作者
Zhou, Jian [1 ]
Li, Yingjie [1 ]
Ma, Qingmiao [1 ]
Liu, Qiaomiao [1 ]
Li, Weiguo [1 ]
Miao, Zilu [1 ]
Zhu, Changming [1 ]
机构
[1] Jiangsu Normal Univ, Sch Geog Geomat & Planning, 101 Shanghai Rd, Xuzhou 221116, Peoples R China
基金
国家重点研发计划;
关键词
aerosol optical depth; sentinel-2; Beijing; high-resolution; OPTICAL DEPTH; ATMOSPHERIC CORRECTION; TROPOSPHERIC AEROSOLS; SPACE;
D O I
10.3390/rs15082172
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The satellite-based Aerosol Optical Depth (AOD) retrieval algorithms are generally needed to construct Land Surface Reflectance (LSR) database. However, errors are unavoidable due to the surface complexity, especially for the short observation period and high-resolution images, such as Sentinel-2 Multi-Spectral Instrument (MSI) data. To address this, reference day images are used instead of the LSR database. The surface is assumed to be Lambertian; however, the fact is that not all pixels meet it well. Therefore, we proposed a window-based AOD retrieval algorithm, which can ignore the unreliable/non-Lambertian pixels in a retrieval window based on two main filtering processes. Finally, using Sentinel-2 Band 1 (60 m), the AODs (120 m) of 134 reference images to 43 reference images were retrieved by this algorithm from 2017 to 2021 in Beijing region, China. The results show that the retrieved AOD with the proposed algorithm exhibits good agreement with the ground-based measured AOD (R > 0.97). The high-resolution AOD presents comparable spatial distributions to the Multiangle Implementation of Atmospheric Correction (MAIAC) algorithm AOD (1 km) products. Moreover, the very little noise and very high spatial continuity of retrieval AOD imply that this algorithm could be ported to other algorithms as part of improving AOD quality.
引用
收藏
页数:15
相关论文
共 58 条
[1]   THE PARAMETERS OF ATMOSPHERIC TURBIDITY [J].
ANGSTROM, A .
TELLUS, 1964, 16 (01) :64-75
[2]  
Ashcroft Peter., 2000, Algorithm Theoretical Basis Document AMSR Level 2A Algorithm
[3]   Validation and comparison of high-resolution MAIAC aerosol products over Central Asia [J].
Chen, Xiangyue ;
Ding, Jianli ;
Liu, Jie ;
Wang, Jingzhe ;
Ge, Xiangyu ;
Wang, Rui ;
Zuo, Hongchao .
ATMOSPHERIC ENVIRONMENT, 2021, 251
[4]   Comparison of Different Missing-Imputation Methods for MAIAC (Multiangle Implementation of Atmospheric Correction) AOD in Estimating Daily PM2.5 Levels [J].
Chen, Zhao-Yue ;
Jin, Jie-Qi ;
Zhang, Rong ;
Zhang, Tian-Hao ;
Chen, Jin-Jian ;
Yang, Jun ;
Ou, Chun-Quan ;
Guo, Yuming .
REMOTE SENSING, 2020, 12 (18)
[5]   RETRIEVAL OF AEROSOL OPTICAL THICKNESS FROM HJ-1A/B IMAGES USING STRUCTURE FUNCTION METHOD [J].
Zhou, Chunyan ;
Liu, Qinhuo ;
Zhong, Bo ;
Sun, Lin ;
Xin, Xiaozhou .
2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, :3838-+
[6]   Spatiotemporal variation and provincial scale differences of the AOD across China during 2000-2021 [J].
de Leeuw, Gerrit ;
Fan, Cheng ;
Li, Zhengqiang ;
Dong, Jiantao ;
Li, Yinna ;
Ou, Yang ;
Zhu, Sifeng .
ATMOSPHERIC POLLUTION RESEARCH, 2022, 13 (04)
[7]   Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services [J].
Drusch, M. ;
Del Bello, U. ;
Carlier, S. ;
Colin, O. ;
Fernandez, V. ;
Gascon, F. ;
Hoersch, B. ;
Isola, C. ;
Laberinti, P. ;
Martimort, P. ;
Meygret, A. ;
Spoto, F. ;
Sy, O. ;
Marchese, F. ;
Bargellini, P. .
REMOTE SENSING OF ENVIRONMENT, 2012, 120 :25-36
[8]  
Dubovik O, 2002, J ATMOS SCI, V59, P590, DOI 10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO
[9]  
2
[10]   High spatial resolution aerosol retrieval with MAIAC: Application to mountain regions [J].
Emili, E. ;
Lyapustin, A. ;
Wang, Y. ;
Popp, C. ;
Korkin, S. ;
Zebisch, M. ;
Wunderle, S. ;
Petitta, M. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2011, 116