Scale-Up of Academic Mesenchymal Stromal Cell Production

被引:2
作者
Laroye, Caroline [1 ,2 ]
Gauthier, Melanie [1 ,2 ]
Morello, Jessica [1 ]
Charif, Naceur [2 ]
Cannard, Veronique Latger [3 ]
Bonnet, Celine [4 ]
Lozniewski, Alain [5 ]
Tchirkov, Andrei [6 ]
De Isla, Natalia [2 ]
Decot, Veronique [1 ,2 ]
Reppel, Loic [1 ,2 ]
Bensoussan, Daniele [1 ,2 ]
机构
[1] CHRU Nancy, Cell Therapy & Tissue Bank Unit, MTInov Bioprod & Biotherapy Integrator, F-54000 Nancy, France
[2] Lorraine Univ, CNRS, IMoPA, F-54000 Nancy, France
[3] CHRU Nancy, Hematol Lab, Flow Cytometry Platform, F-54000 Nancy, France
[4] CHRU Nancy, Genet Lab, F-54000 Nancy, France
[5] CHRU Nancy, Dept Microbiol, F-54000 Nancy, France
[6] CHR Univ Clermont Ferrand, Med Cytogenet Lab, F-63003 Clermont Ferrand, France
关键词
mesenchymal stem cells; Wharton's jelly; scale-up; THERAPY; SEPSIS;
D O I
10.3390/jcm12134414
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Many clinical trials have reported the use of mesenchymal stromal cells (MSCs) following the indication of severe SARS-CoV-2 infection. However, in the COVID19 pandemic context, academic laboratories had to adapt a production process to obtain MSCs in a very short time. Production processes, especially freezing/thawing cycles, or culture medium have impacts on MSC properties. We evaluated the impact of an intermediate cryopreservation state during MSC culture to increase production yields. Methods: Seven Wharton's jelly (WJ)-MSC batches generated from seven different umbilical cords with only one cryopreservation step and 13 WJ-MSC batches produced with intermediate freezing were formed according to good manufacturing practices. The identity (phenotype and clonogenic capacities), safety (karyotype, telomerase activity, sterility, and donor qualification), and functionality (viability, mixed lymphocyte reaction) were analyzed. Results: No significant differences between MSC production processes were observed, except for the clonogenic capacity, which was decreased, although it always remained above our specifications. Conclusions: Intermediate cryopreservation allows an increase in the production yield and has little impact on the basic characteristics of MSCs.
引用
收藏
页数:16
相关论文
共 40 条
[1]  
Abo-Aziza Faten A M, 2017, Int J Hematol Oncol Stem Cell Res, V11, P121
[2]   Umbilical cord-derived mesenchymal stromal cells: predictive obstetric factors for cell proliferation and chondrogenic differentiation [J].
Avercenc-Leger, Leonore ;
Guerci, Philippe ;
Virion, Jean-Marc ;
Cauchois, Ghislaine ;
Hupont, Sebastien ;
Rahouadj, Rachid ;
Magdalou, Jacques ;
Stoltz, Jean-Francois ;
Bensoussan, Daniele ;
Huselstein, Celine ;
Reppel, Loic .
STEM CELL RESEARCH & THERAPY, 2017, 8
[3]   The impact of cryopreservation on bone marrow-derived mesenchymal stem cells: a systematic review [J].
Bahsoun, Soukaina ;
Coopman, Karen ;
Akam, Elizabeth C. .
JOURNAL OF TRANSLATIONAL MEDICINE, 2019, 17 (01)
[4]   Mesenchymal stem cells reduce hypoxia-induced apoptosis in alveolar epithelial cells by modulating HIF and ROS hypoxic signaling [J].
Bernard, Olivier ;
Jeny, Florence ;
Uzunhan, Yurdagul ;
Dondi, Elisabetta ;
Terfous, Rahma ;
Label, Rabab ;
Sutton, Angela ;
Larghero, Jerome ;
Vanneaux, Valerie ;
Nunes, Hilario ;
Boncoeur, Emilie ;
Planes, Carole ;
Dard, Nicolas .
AMERICAN JOURNAL OF PHYSIOLOGY-LUNG CELLULAR AND MOLECULAR PHYSIOLOGY, 2018, 314 (03) :L360-L371
[5]   Clinical Study of Mesenchymal Stem Cell Treatment for Acute Respiratory Distress Syndrome Induced by Epidemic Influenza A (H7N9) Infection: A Hint for COVID-19 Treatment [J].
Chen, Jiajia ;
Hu, Chenxia ;
Chen, Lijun ;
Tang, Lingling ;
Zhu, Yixin ;
Xu, Xiaowei ;
Chen, Lu ;
Gao, Hainv ;
Lu, Xiaoqing ;
Yu, Liang ;
Dai, Xiahong ;
Xiang, Charlie ;
Li, Lanjuan .
ENGINEERING, 2020, 6 (10) :1153-1161
[6]   Treatment With Human Wharton's Jelly-Derived Mesenchymal Stem Cells Attenuates Sepsis-Induced Kidney Injury, Liver Injury, and Endothelial Dysfunction [J].
Condor, Jose M. ;
Rodrigues, Camila E. ;
Moreira, Roberto de Sousa ;
Canale, Daniele ;
Volpini, Rildo A. ;
Shimizu, Maria H. M. ;
Camara, Niels O. S. ;
Noronha, Irene de L. ;
Andrade, Lucia .
STEM CELLS TRANSLATIONAL MEDICINE, 2016, 5 (08) :1048-1057
[7]   Impact of Cryopreservation and Freeze-Thawing on Therapeutic Properties of Mesenchymal Stromal/Stem Cells and Other Common Cellular Therapeutics [J].
Cottle, Chasen ;
Porter, Amanda Paige ;
Lipat, Ariel ;
Turner-Lyles, Caitlin ;
Nguyen, Jimmy ;
Moll, Guido ;
Chinnadurai, Raghavan .
CURRENT STEM CELL REPORTS, 2022, 8 (02) :72-92
[8]   Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement [J].
Dominici, M. ;
Le Blanc, K. ;
Mueller, I. ;
Slaper-Cortenbach, I. ;
Marini, F. C. ;
Krause, D. S. ;
Deans, R. J. ;
Keating, A. ;
Prockop, D. J. ;
Horwitz, E. M. .
CYTOTHERAPY, 2006, 8 (04) :315-317
[9]   Apoptosis in mesenchymal stromal cells induces in vivo recipient-mediated immunomodulation [J].
Galleu, Antonio ;
Riffo-Vasquez, Yanira ;
Trento, Cristina ;
Lomas, Cara ;
Dolcetti, Luigi ;
Cheung, Tik Shing ;
von Bonin, Malte ;
Barbieri, Laura ;
Halai, Krishma ;
Ward, Sophie ;
Weng, Ling ;
Chakraverty, Ronjon ;
Lombardi, Giovanna ;
Watt, Fiona M. ;
Orchard, Kim ;
Marks, David I. ;
Apperley, Jane ;
Bornhauser, Martin ;
Walczak, Henning ;
Bennett, Clare ;
Dazzi, Francesco .
SCIENCE TRANSLATIONAL MEDICINE, 2017, 9 (416)
[10]   VEGF secreted by mesenchymal stem cells mediates the differentiation of endothelial progenitor cells into endothelial cells via paracrine mechanisms [J].
Ge, Quanhu ;
Zhang, Hongwei ;
Hou, Jixue ;
Wan, Longfei ;
Cheng, Wenzhe ;
Wang, Xiaoyi ;
Dong, Dan ;
Chen, Congzhe ;
Xia, Jie ;
Guo, Jun ;
Chen, Xueling ;
Wu, Xiangwei .
MOLECULAR MEDICINE REPORTS, 2018, 17 (01) :1667-1675