Effect of Exercise and Oral Niacinamide Mononucleotide on Improving Mitochondrial Autophagy in Alzheimer's Disease

被引:14
作者
Wu, Weijia [1 ]
Yuan, Shunling [1 ]
Tang, Yingzhe [1 ]
Meng, Xiangyuan [1 ]
Peng, Mei [1 ]
Hu, Zelin [1 ]
Liu, Wenfeng [1 ,2 ]
机构
[1] Hunan Normal Univ, Hunan Prov Key Lab Phys Fitness & Sports Rehabil, Changsha 410012, Peoples R China
[2] Hunan Normal Univ, Key Lab Prot Chem & Dev Biol, Minist Educ, Changsha 410081, Peoples R China
基金
中国国家自然科学基金;
关键词
NAD(+); NMN; exercise; AD; mitochondrial autophagy; NICOTINAMIDE MONONUCLEOTIDE; OXIDATIVE STRESS; SKELETAL-MUSCLE; STEM-CELLS; NAD(+); SIRT1; BIOGENESIS; METABOLISM; DYSFUNCTION; ACTIVATION;
D O I
10.3390/nu15132851
中图分类号
R15 [营养卫生、食品卫生]; TS201 [基础科学];
学科分类号
100403 ;
摘要
Oral niacinamide mononucleotide (NMN) and aerobic exercise have been shown to enhance niacinamide adenine dinucleotide (NAD(+)) in the body. NAD(+) plays a critical role in the body and can directly and indirectly affect many key cellular functions, including metabolic pathways, DNA repair, chromatin remodeling, cell aging, and immune cell function. It is noteworthy that the level of NAD(+) decreases gradually with increasing age. Decreased levels of NAD(+) have been causally associated with a number of diseases associated with aging, including cognitive decline, cancer, metabolic diseases, sarcopenia, and frailty. Many diseases related to aging can be slowed down or even reversed by restoring NAD(+) levels. For example, oral NMN or exercise to increase NAD(+) levels in APP/PS1 mice have been proven to improve mitochondrial autophagy, but currently, there is no regimen combining oral NMN with exercise. This review summarizes recent studies on the effect of oral NMN on the enhancement of NAD(+) in vivo and the improvements in mitochondrial autophagy abnormalities in AD through aerobic exercise, focusing on (1) how oral NMN improves the internal NAD(+) level; (2) how exercise regulates the content of NAD(+) in the body; (3) the relationship between exercise activation of NAD(+) and AMPK; (4) how SIRT1 is regulated by NAD(+) and AMPK and activates PGC-1 & alpha; to mediate mitochondrial autophagy through changes in mitochondrial dynamics. By summarizing the results of the above four aspects, and combined with the synthesis of NAD(+) in vivo, we can infer how exercise elevates the level of NAD(+) in vivo to mediate mitochondrial autophagy, so as to propose a new hypothesis that exercise interferes with Alzheimer's disease (AD).
引用
收藏
页数:17
相关论文
共 116 条
[81]   Nicotinamide riboside and caffeine partially restore diminished NAD availability but not altered energy metabolism in Alzheimer's disease [J].
Ryu, Woo-In ;
Shen, Minqi ;
Lee, Yoon ;
Healy, Ryan A. ;
Bormann, Mariana K. ;
Cohen, Bruce M. ;
Sonntag, Kai-Christian .
AGING CELL, 2022, 21 (07)
[82]   Crosstalk between Oxidative Stress and SIRT1: Impact on the Aging Process [J].
Salminen, Antero ;
Kaarniranta, Kai ;
Kauppinen, Anu .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2013, 14 (02) :3834-3859
[83]   PINK1/Parkin Influences Cell Cycle by Sequestering TBK1 at Damaged Mitochondria, Inhibiting Mitosis [J].
Sarraf, Shireen A. ;
Sideris, Dionisia P. ;
Giagtzoglou, Nikolaos ;
Ni, Lina ;
Kankel, Mark W. ;
Sen, Anindya ;
Bochicchio, Lauren E. ;
Huang, Chiu-Hui ;
Nussenzweig, Samuel C. ;
Worley, Stuart H. ;
Morton, Paul D. ;
Artavanis-Tsakonas, Spyros ;
Youle, Richard J. ;
Pickrell, Alicia M. .
CELL REPORTS, 2019, 29 (01) :225-+
[84]   Transcriptional paradigms in mammalian mitochondrial biogenesis and function [J].
Scarpulla, Richard C. .
PHYSIOLOGICAL REVIEWS, 2008, 88 (02) :611-638
[85]   AMPK activation induces mitophagy and promotes mitochondrial fission while activating TBK1 in a PINK1-Parkin independent manner [J].
Seabright, Alex P. ;
Fine, Nicholas H. F. ;
Barlow, Jonathan P. ;
Lord, Samuel O. ;
Musa, Ibrahim ;
Gray, Alexander ;
Bryant, Jack A. ;
Banzhaf, Manuel ;
Lavery, Gareth G. ;
Hardie, D. Grahame ;
Hodson, David J. ;
Philp, Andrew ;
Lai, Yu-Chiang .
FASEB JOURNAL, 2020, 34 (05) :6284-6301
[86]   Novel osmotin inhibits SREBP2 via the AdipoR1/AMPK/SIRT1 pathway to improve Alzheimer's disease neuropathological deficits [J].
Shah, S. A. ;
Yoon, G. H. ;
Chung, S. S. ;
Abid, M. N. ;
Kim, T. H. ;
Lee, H. Y. ;
Kim, M. O. .
MOLECULAR PSYCHIATRY, 2017, 22 (03) :407-416
[87]   Bacteria Boost Mammalian Host NAD Metabolism by Engaging the Deamidated Biosynthesis Pathway [J].
Shats, Igor ;
Williams, Jason G. ;
Liu, Juan ;
Makarov, Mikhail, V ;
Wu, Xiaoyue ;
Lih, Fred B. ;
Deterding, Leesa J. ;
Lim, Chaemin ;
Xu, Xiaojiang ;
Randall, Thomas A. ;
Lee, Ethan ;
Li, Wenling ;
Fan, Wei ;
Li, Jian-Liang ;
Sokolsky, Marina ;
Kabanov, Alexander, V ;
Li, Leping ;
Migaud, Marie E. ;
Locasale, Jason W. ;
Li, Xiaoling .
CELL METABOLISM, 2020, 31 (03) :564-+
[88]   Maintaining energy homeostasis is an essential component of Wlds-mediated axon protection [J].
Shen, Hua ;
Hyrc, Krzysztof L. ;
Goldberg, Mark P. .
NEUROBIOLOGY OF DISEASE, 2013, 59 :69-79
[89]   Reducing acetylated tau is neuroprotective in brain injury [J].
Shin, Min-Kyoo ;
Vazquez-Rosa, Edwin ;
Koh, Yeojung ;
Dhar, Matasha ;
Chaubey, Kalyani ;
Cintron-Perez, Coral J. ;
Barker, Sarah ;
Miller, Emiko ;
Franke, Kathryn ;
Noterman, Maria F. ;
Seth, Divya ;
Allen, Rachael S. ;
Motz, Cara T. ;
Rao, Sriganesh Ramachandra ;
Skelton, Lara A. ;
Pardue, Machelle T. ;
Fliesler, Steven J. ;
Wang, Chao ;
Tracy, Tara E. ;
Gan, Li ;
Liebl, Daniel J. ;
Savarraj, Jude P. J. ;
Torres, Glenda L. ;
Ahnstedt, Hilda ;
McCullough, Louise D. ;
Kitagawa, Ryan S. ;
Choi, H. Alex ;
Zhang, Pengyue ;
Hou, Yuan ;
Chiang, Chien-Wei ;
Li, Lang ;
Ortiz, Francisco ;
Kilgore, Jessica A. ;
Williams, Noelle S. ;
Whitehair, Victoria C. ;
Gefen, Tamar ;
Flanagan, Margaret E. ;
Stamler, Jonathan S. ;
Jain, Mukesh K. ;
Kraus, Allison ;
Cheng, Feixiong ;
Reynolds, James D. ;
Pieper, Andrew A. .
CELL, 2021, 184 (10) :2715-+
[90]   Specific ablation of Nampt in adult neural stem cells recapitulates their functional defects during aging [J].
Stein, Liana R. ;
Imai, Shin-ichiro .
EMBO JOURNAL, 2014, 33 (12) :1321-1340