Comparative study on the structural and electrochemical properties of nitrogen-doped and nitrogen and sulfur co-doped reduced graphene oxide electrode prepared by hydrothermal technique

被引:3
作者
Nathabumroong, Sarawudh [1 ]
Chanlek, Narong [2 ]
Sareein, Thanapong [3 ]
Chongsereecharoen, Ekachai [4 ]
Pakawanit, Phakkhannan [2 ]
Poochai, Chatwarin [5 ]
Eknapakul, Tanachat [1 ]
Sriprachuabwong, Chakrit [5 ]
Nakajima, Hideki [2 ]
Thangdee, Piyaporn [1 ]
Lomas, Tanom [5 ]
Rujirawat, Saroj [2 ]
Songsiriritthigul, Prayoon [1 ]
Manyum, Prapan [1 ]
Tuantranont, Adisorn
Yimnirun, Rattikorn [6 ,7 ]
机构
[1] Suranaree Univ Technol, Res Network NANOTEC SUT Adv Nanomat & Characteriza, Sch Phys, Inst Sci, Nakhon Ratchasama 30000, Thailand
[2] Synchrotron Light Res Inst, Nakhon Ratchasima 30000, Thailand
[3] Rajamangala Univ Technol, Fac Sci & Technol, Div Ind Mat Sci, Phra Nakhon 10800, Thailand
[4] Valaya Alongkorn Rajabhat Univ, Fac Sci & Technol, Klongluang 13180, Pathum Thani, Thailand
[5] Natl Sci & Technol Dev Agcy NSTDA, Graphene & Printed Elect Dual Use Applicat Res Div, Natl Secur & Dual Use Technol Ctr NSD, 111 Thailand Sci Pk, Amphoe Klong Luang 12120, Phathum Thani, Thailand
[6] Vidyasirimedhi Inst Sci & Technol, Sch Energy Sci & Engn, Rayong 21210, Thailand
[7] Vidyasirimedhi Inst Sci & Technol VISTEC, Res Network NANOTEC VISTEC Nanotechnol Energy, Wangchan 21210, Rayong, Thailand
关键词
Reduced graphene oxide; Nitrogen-doped reduced graphene oxide; Nitrogen and sulfur-co-doped reduced gra-phene oxide; The specific capacitance; sp2; hybridization; IR-Drop; LOCAL-STRUCTURE; GRAPHITE OXIDE; RAMAN-SPECTRA; PERFORMANCE; REDUCTION; CARBON; SURFACE; SUPERCAPACITORS; SPECTROSCOPY; COMPOSITE;
D O I
10.1016/j.radphyschem.2023.110887
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nitrogen-and co -nitrogen-and sulfur-doped reduced graphene oxide (named N-rGO and N/S-rGO) was prepared by a simple hydrothermal technique using urea and thiourea as doping agents, respectively, to improve the properties of supercapacitor electrodes. Both were compared with rGO in electrochemical evaluations. The supercapacitor using N-rGO in 1 M H2SO4 provided the largest specific capacitance, 99 F g-1, while those using N/S-rGO and rGO exhibited 51 and 19 F g-1 at 0.25 A g-1, respectively. Furthermore, the supercapacitors using N-rGO and N/S-rGO electrodes showed a smaller charge transfer resistance (Rct) and a lower IR-drop than those using the rGO electrode, indicating a faster charge transfer at the interface between electrode and electrolyte and higher electronic conductivity due to N or N/S heteroatom doping in the graphene oxide structure. Furthermore, the N-rGO electrode has a higher sp2 hybridization ratio and a lower ID/IG ratio than the N/S-rGO electrode. Furthermore, the lowest contact angles of the N/S-rGO electrode were found, which was attributed to better aqueous electrolyte compatibility than the N-rGO and rGO electrodes. Therefore, the higher electrical conduc-tivity of the N-rGO electrode reveals more relevant characteristics for high-performance supercapacitors than the good wettability of the N/S-rGO electrode.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Flexible photodetector based on cotton coated with reduced graphene oxide and sulfur and nitrogen co-doped graphene quantum dots
    Cheng Luo
    He Xie
    Chengyi Hou
    Qinghong Zhang
    Yaogang Li
    Hongzhi Wang
    Journal of Materials Science, 2019, 54 : 3242 - 3251
  • [32] Nitrogen-Doped Reduced Graphene Oxide Hydrogel Achieved via a One-Step Hydrothermal Process
    Song, Man
    Zhao, Jie
    Meng, Yu
    Riekehr, Lars
    Hou, Peng-Xiang
    Grennberg, Helena
    Zhang, Zhi-Bin
    CHEMNANOMAT, 2019, 5 (09) : 1144 - 1151
  • [33] Co2Nx/nitrogen-doped reduced graphene oxide for enzymeless glucose detection
    Kong, Lingjun
    Ren, Zhiyu
    Du, Shichao
    Wu, Jun
    Fu, Honggang
    CHEMICAL COMMUNICATIONS, 2014, 50 (38) : 4921 - 4923
  • [34] A Niobium and Nitrogen Co-Doped DLC Film Electrode and Its Electrochemical Properties
    Liu, Na
    Zhu, Hekang
    Wei, Qiuping
    Long, Hangyu
    Deng, Zejun
    Yu, Zhiming
    Xie, Youneng
    Wang, Jian
    Ma, Li
    Zhou, Kechao
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (14) : H1091 - H1098
  • [35] Three Dimensional Nitrogen-Doped and Nitrogen, Sulfur-Codoped Graphene Hydrogels for Electrode Materials in Supercapacitors
    Yuan, Zhao
    Qiao, Fei
    Wang, Guigiang
    Zhou, Jin
    Cui, Hongyou
    Zhuo, Shuping
    Xing, Ling-Bao
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2018, 18 (08) : 5423 - 5432
  • [36] Nitrogen-Doped Reduced Graphene Oxide Prepared by Simultaneous Thermal Reduction and Nitrogen Doping of Graphene Oxide in Air and Its Application as an Electrocatalyst
    Du, Donghe
    Li, Pengcheng
    Ouyang, Jianyong
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (48) : 26952 - 26958
  • [37] Nitrogen-doped reduced graphene oxide-polyaniline composite materials: hydrothermal treatment, characterisation and supercapacitive properties
    Mombeshora, Edwin T.
    Muchuweni, Edigar
    Davies, Matthew L.
    Martincigh, Bice S.
    Nyamori, Vincent O.
    NEW JOURNAL OF CHEMISTRY, 2023, 47 (07) : 3502 - 3515
  • [38] One-step electrochemical synthesis of nitrogen and sulfur co-doped, high-quality graphene oxide
    Parvez, Khaled
    Rincon, Rosalba A.
    Weber, Nils-Eike
    Cha, Kitty C.
    Venkataraman, Shyam S.
    CHEMICAL COMMUNICATIONS, 2016, 52 (33) : 5714 - 5717
  • [39] A theoretical study on molybdenum and sulfur co-doped graphene for electrocatalytic nitrogen reduction
    Qin, Yanyang
    Zhang, Shishi
    Gao, Guoxin
    Ding, Shujiang
    Su, Yaqiong
    MOLECULAR CATALYSIS, 2022, 517
  • [40] Synthesis and Electrocatalytic Properties of Pt Nanoparticles on Nitrogen-Doped Reduced Graphene Oxide for Methanol Oxidation
    Wang Li
    Ma Jun-Hong
    ACTA PHYSICO-CHIMICA SINICA, 2014, 30 (07) : 1267 - 1273