Drug delivery systems based on polyethylene glycol hydrogels for enhanced bone regeneration

被引:93
作者
Sun, Shouye [1 ]
Cui, Yutao [1 ]
Yuan, Baoming [1 ]
Dou, Minghan [1 ]
Wang, Gan [1 ]
Xu, Hang [1 ]
Wang, Jingwei [1 ]
Yin, Wen [1 ]
Wu, Dankai [1 ]
Peng, Chuangang [1 ]
机构
[1] Jilin Univ, Orthopaed Med Ctr, Hosp 2, Changchun, Peoples R China
关键词
PEG; drug delivery system; hydrogel; biomaterial; bone regeneration; IN-VITRO; NANOCOMPOSITE HYDROGELS; CONTROLLED-RELEASE; STEM-CELL; PEG; NANOPARTICLES; SCAFFOLDS; BIODEGRADATION; ALENDRONATE; ELASTICITY;
D O I
10.3389/fbioe.2023.1117647
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Drug delivery systems composed of osteogenic substances and biological materials are of great significance in enhancing bone regeneration, and appropriate biological carriers are the cornerstone for their construction. Polyethylene glycol (PEG) is favored in bone tissue engineering due to its good biocompatibility and hydrophilicity. When combined with other substances, the physicochemical properties of PEG-based hydrogels fully meet the requirements of drug delivery carriers. Therefore, this paper reviews the application of PEG-based hydrogels in the treatment of bone defects. The advantages and disadvantages of PEG as a carrier are analyzed, and various modification methods of PEG hydrogels are summarized. On this basis, the application of PEG-based hydrogel drug delivery systems in promoting bone regeneration in recent years is summarized. Finally, the shortcomings and future developments of PEG-based hydrogel drug delivery systems are discussed. This review provides a theoretical basis and fabrication strategy for the application of PEG-based composite drug delivery systems in local bone defects.
引用
收藏
页数:17
相关论文
共 139 条
[1]   Multifunctional nanoparticles for intracellular drug delivery and photoacoustic imaging of mesenchymal stem cells [J].
Adjei, Isaac M. ;
Yang, Hao ;
Plumton, Glendon ;
Maldonado-Camargo, Lorena ;
Dobson, Jon ;
Rinaldi, Carlos ;
Jiang, Huabei ;
Sharma, Blanka .
DRUG DELIVERY AND TRANSLATIONAL RESEARCH, 2019, 9 (03) :652-666
[2]   Thermosensitive hybrid hyaluronan/p(HPMAm-lac)-PEG hydrogels enhance cartilage regeneration in a mouse model of osteoarthritis [J].
Agas, Dimitrios ;
Laus, Fulvio ;
Lacava, Giovanna ;
Marchegiani, Andrea ;
Deng, Siyuan ;
Magnoni, Federico ;
Silva, Guilherme Gusmao ;
Di Martino, Piera ;
Sabbieti, Maria Giovanna ;
Censi, Roberta .
JOURNAL OF CELLULAR PHYSIOLOGY, 2019, 234 (11) :20013-20027
[3]   Photoencapsulated-BMP2 in visible light-cured thiol-acrylate hydrogels for craniofacial bone tissue engineering [J].
Aghali, Arbi ;
Arman, Huseyin E. .
REGENERATIVE MEDICINE, 2020, 15 (09) :2099-2113
[4]   A hydrogel/fiber scaffold based on silk fibroin/oxidized pectin with sustainable release of vancomycin hydrochloride [J].
Ahadi, Fereshteh ;
Khorshidi, Sajedeh ;
Karkhaneh, Akbar .
EUROPEAN POLYMER JOURNAL, 2019, 118 :265-274
[5]   In vivo evaluation of biocompatibility and immune modulation potential of poly(caprolactone)-poly(ethylene glycol)-poly(caprolactone)-gelatin hydrogels enriched with nano-hydroxyapatite in the model of mouse [J].
Alipour, Mahdieh ;
Ashrafihelan, Javad ;
Salehi, Roya ;
Aghazadeh, Zahra ;
Rezabakhsh, Aysa ;
Hassanzadeh, Armin ;
Firouzamandi, Masomeh ;
Heidarzadeh, Morteza ;
Rahbarghazi, Reza ;
Aghazadeh, Marziyeh ;
Saghati, Sepideh .
JOURNAL OF BIOMATERIALS APPLICATIONS, 2021, 35 (10) :1253-1263
[6]   Near-Model Amphiphilic Polymer Conetworks Based on Four-Arm Stars of Poly(vinylidene fluoride) and Poly(ethylene glycol): Synthesis and Characterization [J].
Apostolides, Demetris E. ;
Patrickios, Costas S. ;
Sakai, Takamasa ;
Guerre, Marc ;
Lopez, Gerald ;
Ameduri, Bruno ;
Ladmiral, Vincent ;
Simon, Miriam ;
Gradzielski, Michael ;
Clemens, Daniel ;
Krumm, Christian ;
Tiller, Joerg C. ;
Ernould, Bruno ;
Gohy, Jean-Francois .
MACROMOLECULES, 2018, 51 (07) :2476-2488
[7]   Dual crosslinked chondroitin sulfate injectable hydrogel formed via continuous Diels-Alder (DA) click chemistry for bone repair [J].
Bai, Xiao ;
Lu, Shaoyu ;
Cao, Zhen ;
Ni, Boli ;
Wang, Xin ;
Ning, Piao ;
Ma, Dongyang ;
Wei, Hua ;
Liu, Mingzhu .
CARBOHYDRATE POLYMERS, 2017, 166 :123-130
[8]   A novel nano-hydroxyapatite/synthetic polymer/bone morphogenetic protein-2 composite for efficient bone regeneration [J].
Bal, Zeynep ;
Korkusuz, Feza ;
Ishiguro, Hiroyuki ;
Okada, Rintaro ;
Kushioka, Junichi ;
Chijimatsu, Ryota ;
Kodama, Joe ;
Tateiwa, Daisuke ;
Ukon, Yuichiro ;
Nakagawa, Shinichi ;
Dede, Eda Ciftci ;
Gizer, Merve ;
Korkusuz, Petek ;
Yoshikawa, Hideki ;
Kaito, Takashi .
SPINE JOURNAL, 2021, 21 (05) :865-873
[9]   Chitosan/nano-hydroxyapatite/nano-zirconium dioxide scaffolds with miR-590-5p for bone regeneration [J].
Balagangadharan, K. ;
Chandran, S. Viji ;
Arumugam, B. ;
Saravanan, S. ;
Venkatasubbu, G. Devanand ;
Selvamurugan, N. .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2018, 111 :953-958
[10]   Proteomics of regenerated tissue in response to a titanium implant with a bioactive surface in a rat tibial defect model [J].
Boteanu, Raluca M. ;
Suica, Viorel I. ;
Ivan, Luminita ;
Safciuc, Florentina ;
Uyy, Elena ;
Dragan, Emanuel ;
Croitoru, Sorin M. ;
Grumezescu, Valentina ;
Chiritoiu, Marioara ;
Sima, Livia E. ;
Vlagioiu, Constantin ;
Socol, Gabriel ;
Antohe, Felicia .
SCIENTIFIC REPORTS, 2020, 10 (01)