ALTERNATING SIGN MATRICES AND VERMA MODULES

被引:1
作者
Ko, Hankyung [1 ]
机构
[1] Uppsala Univ, Dept Math, Box 480, SE-75106 Uppsala, Sweden
关键词
D O I
10.1090/proc/16151
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the poset of alternating sign matrices, with Bruhat order, is isomorphic to the poset of certain submodules of the dominant Verma module for the special linear Lie algebra sln. The latter poset consists of the intersections of Verma submodules and can also be defined in terms of a Kazhdan-Lusztig cell.
引用
收藏
页码:949 / 959
页数:11
相关论文
共 12 条
[1]  
Bjorner Anders., 2005, GRADUATE TEXTS MATH, V231
[2]   Alternating sign matrices and their Bruhat order [J].
Brualdi, Richard A. ;
Schroeder, Michael W. .
DISCRETE MATHEMATICS, 2017, 340 (08) :1996-2019
[3]   SOME HOMOLOGICAL PROPERTIES OF CATEGORY O FOR LIE SUPERALGEBRAS [J].
Chen, Chih-Whi ;
Mazorchuk, Volodymyr .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2023, 114 (01) :50-77
[4]   Kazhdan-Lusztig cells and the Murphy basis [J].
Geck, Meinolf .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2006, 93 :635-665
[5]   REPRESENTATIONS OF COXETER GROUPS AND HECKE ALGEBRAS [J].
KAZHDAN, D ;
LUSZTIG, G .
INVENTIONES MATHEMATICAE, 1979, 53 (02) :165-184
[6]  
Ko HKY, 2021, Arxiv, DOI arXiv:2109.01067
[7]   Bigrassmannian permutations and Verma modules [J].
Ko, Hankyung ;
Mazorchuk, Volodymyr ;
Mrden, Rafael .
SELECTA MATHEMATICA-NEW SERIES, 2021, 27 (04)
[8]   Symmetry classes of alternating-sign matrices under one roof [J].
Kuperberg, G .
ANNALS OF MATHEMATICS, 2002, 156 (03) :835-866
[9]  
Lascoux Alain., 1996, ELECTRON J COMB, V3
[10]   ALTERNATING SIGN MATRICES AND DESCENDING PLANE PARTITIONS [J].
MILLS, WH ;
ROBBINS, DP ;
RUMSEY, H .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1983, 34 (03) :340-359