Prescribed-time stabilisation for uncertain reaction-diffusion equations with Neumann boundary control

被引:9
作者
Wei, Chengzhou [1 ]
Li, Junmin [1 ]
He, Chao [1 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian 710126, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Reaction-diffusion equations; prescribed-time stabilisation; disturbances estimator; time-varying feedback gain; Neumann boundary control; FINITE-TIME; HEAT-EQUATION; FEEDBACK; SUBJECT; PDES; SYSTEMS; SPACE;
D O I
10.1080/00207179.2022.2094837
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study the Neumann boundary feedback stabilisation for reaction-diffusion equations with matched boundary uncertainties (including internal uncertainty and external disturbance) within a prescribed time, where the convergence time is independent of initial conditions and can be prescribed a priori. We first estimate the uncertainties within the prescribed time by constructing an estimator and then propose the prescribed-time boundary control law by utilising backstepping transformation with a time-varying kernel. Neumann boundary control is verified to be uniformly bounded.
引用
收藏
页码:2374 / 2383
页数:10
相关论文
共 46 条
[1]   Finite-time control of linear systems subject to parametric uncertainties and disturbances [J].
Amato, F ;
Ariola, M ;
Dorato, P .
AUTOMATICA, 2001, 37 (09) :1459-1463
[2]   Finite-time stability of continuous autonomous systems [J].
Bhat, SP ;
Bernstein, DS .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (03) :751-766
[3]   Boundary control of an unstable heat equation via measurement of domain-averaged temperature [J].
Boskovic, DM ;
Krstic, M ;
Liu, WJ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (12) :2022-2028
[4]   Sliding mode boundary control of a parabolic PDE system with parameter variations and boundary uncertainties [J].
Cheng, Meng-Bi ;
Radisavljevic, Verica ;
Su, Wu-Chung .
AUTOMATICA, 2011, 47 (02) :381-387
[5]   Null Controllability and Finite Time Stabilization for the Heat Equations with Variable Coefficients in Space in One Dimension via Backstepping Approach [J].
Coron, Jean-Michel ;
Hoai-Minh Nguyen .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 225 (03) :993-1023
[6]   Finite-time convergent gradient flows with applications to network consensus [J].
Cortés, Jorge .
AUTOMATICA, 2006, 42 (11) :1993-2000
[7]   UDE-based robust boundary control for an unstable parabolic PDE with unknown input disturbance [J].
Dai, Jiguo ;
Ren, Beibei .
AUTOMATICA, 2018, 93 :363-368
[8]   Adaptive techniques for the MRAC, adaptive parameter identification, and on-line fault monitoring and accommodation for a class of positive real infinite dimensional systems [J].
Demetriou, Michael A. ;
Ito, Kazufumi ;
Smith, Ralph C. .
INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2009, 23 (02) :193-215
[9]   Finite-time multi-target tracking of networked Euler-Lagrange systems via hierarchical active disturbance rejection control [J].
Dong, Jiu-Wang ;
Liang, Chang-Duo ;
Ge, Ming-Feng ;
Ding, Teng-Fei ;
Zhao, Xiao-Wen ;
Liu, Zhi-Wei .
INTERNATIONAL JOURNAL OF CONTROL, 2022, 95 (10) :2743-2757
[10]   Event-triggered boundary control of constant-parameter reaction-diffusion PDEs: A small-gain approach [J].
Espitia, Nicolas ;
Karafyllis, Iasson ;
Krstic, Miroslav .
AUTOMATICA, 2021, 128