Taking Advantage of the Mistakes: Rethinking Clustered Federated Learning for IoT Anomaly Detection

被引:4
|
作者
Fan, Jiamin [1 ]
Wu, Kui [1 ]
Tang, Guoming [2 ]
Zhou, Yang [3 ]
Huang, Shengqiang [3 ]
机构
[1] Univ Victoria, Dept Comp Sci, Victoria, BC V8P 5C2, Canada
[2] Peng Cheng Lab, Shenzhen 518066, Peoples R China
[3] Huawei Technol Canada Co Ltd, Vancouver, BC V5C 6S7, Canada
关键词
Internet of Things; Anomaly detection; Feature extraction; Data models; Training; Federated learning; Adaptation models; Cluster federated learning; IoT traffic anomaly detection; spatial-temporal non-IID problem;
D O I
10.1109/TPDS.2024.3379905
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Clustered federated learning (CFL) is a promising solution to address the non-IID problem in the spatial domain for federated learning (FL). However, existing CFL solutions overlook the non-IID issue in the temporal domain and lack consideration of time efficiency. In this work, we propose a novel approach, called ClusterFLADS, which takes advantage of the false predictions of the inappropriate global models, together with knowledge of temperature scaling and catastrophic forgetting to reveal distributional similarities between the training data (of different clusters) and the test data. Additionally, we design an efficient feature extraction scheme by exploiting the role of each layer in a neural network's learning process. By strategically selecting model parameters and using PCA for dimensionality reduction, ClusterFLADS effectively improves clustering speed. We evaluate ClusterFLADS using real-world IoT trace data in various scenarios. Our results show that ClusterFLADS accurately and efficiently clusters clients, achieving a 100% true positive rate and low false positives across various data distributions in both the spatial and temporal domains.
引用
收藏
页码:707 / 721
页数:15
相关论文
共 50 条
  • [21] Collaborative Anomaly Detection for Internet of Things based on Federated Learning
    Kim, Seongwoo
    Cai, He
    Hua, Cunqing
    Gu, Pengwenlong
    Xu, Wenchao
    Park, Jeonghyeok
    2020 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA (ICCC), 2020, : 623 - 628
  • [22] POSTER: Decentralized Federated Learning for Internet of Things Anomaly Detection
    Lian, Zhuotao
    Su, Chunhua
    ASIA CCS'22: PROCEEDINGS OF THE 2022 ACM ASIA CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2022, : 1249 - 1251
  • [23] Anomaly Detection through Unsupervised Federated Learning
    Nardi, Mirko
    Valerio, Lorenzo
    Passarella, Andrea
    2022 18TH INTERNATIONAL CONFERENCE ON MOBILITY, SENSING AND NETWORKING, MSN, 2022, : 495 - 501
  • [24] Federated Learning for Anomaly Detection in Vehicular Networks
    Tham, Chen-Khong
    Yang, Lu
    Khanna, Akshit
    Gera, Bhavya
    2023 IEEE 97TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-SPRING, 2023,
  • [25] Network Anomaly Detection Using Federated Learning
    Marfo, William
    Tosh, Deepak K.
    Moore, Shirley V.
    2022 IEEE MILITARY COMMUNICATIONS CONFERENCE (MILCOM), 2022,
  • [26] Rethinking Clustered Federated Learning in NOMA Enhanced Wireless Networks
    Lin, Yushen
    Wang, Kaidi
    Ding, Zhiguo
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (11) : 16875 - 16890
  • [27] Global or Local Adaptation? Client-Sampled Federated Meta-Learning for Personalized IoT Intrusion Detection
    Yan, Haorui
    Lin, Xi
    Li, Shenghong
    Peng, Hao
    Zhang, Bo
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2025, 20 : 279 - 293
  • [28] A Fully Privacy-Preserving Solution for Anomaly Detection in IoT using Federated Learning and Homomorphic Encryption
    Arazzi, Marco
    Nicolazzo, Serena
    Nocera, Antonino
    INFORMATION SYSTEMS FRONTIERS, 2023, 27 (1) : 367 - 390
  • [29] FADngs: Federated Learning for Anomaly Detection
    Dong, Boyu
    Chen, Dong
    Wu, Yu
    Tang, Siliang
    Zhuang, Yueting
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (02) : 2578 - 2592
  • [30] Federated Learning for Anomaly Detection in Maritime Movement Data
    Graser, Anita
    Weissenfeld, Axel
    Heistracher, Clemens
    Dragaschnig, Melitta
    Widhalm, Peter
    PROCEEDINGS OF THE 2024 25TH IEEE INTERNATIONAL CONFERENCE ON MOBILE DATA MANAGEMENT, MDM 2024, 2024, : 77 - 82