We study the asymptotics of complete Kahler-Einstein metrics on strictly pseudoconvex domains in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}<^>n$$\end{document} and derive a convergence theorem for solutions to the corresponding Monge-Ampere equation. If only a portion of the boundary is analytic, the solutions satisfy Gevrey type estimates for tangential derivatives. A counterexample for the model linearized equation suggests that there is no local convergence theorem for the complex Monge-Ampere equation.
机构:
Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, CanadaUniv British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
Chau, Albert
Tam, Luen-Fai
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, Dept Math, Inst Math Sci, Shatin, Hong Kong, Peoples R ChinaUniv British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada