Asymptotics and Convergence for the Complex Monge-Ampère Equation

被引:0
|
作者
Han, Qing [1 ]
Jiang, Xumin [2 ]
机构
[1] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
[2] Fordham Univ, Dept Math, Bronx, NY 10458 USA
基金
美国国家科学基金会;
关键词
Complex Monge-Ampere equation; Asymptotic behavior; Convergence; Kahler-Einstein metric; BLOW-UP SURFACES; BOUNDARY-REGULARITY; COMPACT; EXISTENCE; CURVATURE; BEHAVIOR;
D O I
10.1007/s40818-024-00171-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the asymptotics of complete Kahler-Einstein metrics on strictly pseudoconvex domains in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}<^>n$$\end{document} and derive a convergence theorem for solutions to the corresponding Monge-Ampere equation. If only a portion of the boundary is analytic, the solutions satisfy Gevrey type estimates for tangential derivatives. A counterexample for the model linearized equation suggests that there is no local convergence theorem for the complex Monge-Ampere equation.
引用
收藏
页数:64
相关论文
共 50 条
  • [21] Boundary Hölder Gradient Estimates for the Monge–Ampère Equation
    Ovidiu Savin
    Qian Zhang
    The Journal of Geometric Analysis, 2020, 30 : 2010 - 2035
  • [22] Strictly convex solutions for singular Monge-Ampère equations with nonlinear gradient terms: existence and boundary asymptotic behavior
    Feng, Meiqiang
    Sun, Huayuan
    Zhang, Xuemei
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2020, 1 (05):
  • [23] The Rate of Convergence to the Asymptotics for the Wave Equation in an Exterior Domain
    Katayama, Soichiro
    Kubo, Hideo
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2010, 53 (03): : 331 - 358
  • [24] On Neumann problem for the degenerate Monge–Ampère type equations
    Juhua Shi
    Feida Jiang
    Boundary Value Problems, 2021
  • [25] Boundary Regularity for Solutions to the Linearized Monge–Ampère Equations
    N. Q. Le
    O. Savin
    Archive for Rational Mechanics and Analysis, 2013, 210 : 813 - 836
  • [26] A C2,α estimate of the complex Monge Ampere equation
    Li, Chao
    Li, Jiayu
    Zhang, Xi
    JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 275 (01) : 149 - 169
  • [27] The exterior Dirichlet problems of Monge–Ampère equations in dimension two
    Limei Dai
    Boundary Value Problems, 2020
  • [28] Necessary and sufficient conditions of entire subsolutions to Monge–Ampère type equations
    Yuyao Yang
    Xuemei Zhang
    Annals of Functional Analysis, 2023, 14
  • [29] The complex Monge-Ampere equation with a gradient term
    Tosatti, Valentino
    Weinkove, Ben
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2021, 17 (03) : 1005 - 1024
  • [30] Large solutions to complex Monge-AmpSre equations: Existence, uniqueness and asymptotics
    Xiang, Ni
    Yang, Xiaoping
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2011, 32 (04) : 569 - 580