Impact of hybrid nanofluid on thermal behavior of flat-plate solar collector: performance study

被引:8
|
作者
Selvam, Lokesh [1 ]
Aruna, M. [2 ]
Hossain, Ismail [3 ]
Venkatesh, R. [4 ]
Karthigairajan, M. [5 ]
Prabagaran, S. [6 ]
Mohanavel, V. [7 ,8 ]
Seikh, A. H. [9 ]
Kalam, Md. Abul [10 ]
机构
[1] SRM Inst Sci & Technol, Dept Mech Engn, Ramapuram Campus, Chennai 600089, Tamil Nadu, India
[2] Liwa Coll, Fac Business, Dept Ind Management, Abu Dhabi, U Arab Emirates
[3] Ural Fed Univ, Dept Nucl & Renewable Energy, Ekaterinburg 620002, Russia
[4] Saveetha Univ, Saveetha Inst Med & Tech Sci SIMATS, Saveetha Sch Engn, Dept Mech Engn, Chennai 602105, Tamil Nadu, India
[5] Karpaga Vinayaga Coll Engn & Technol, Dept Mech Engn, Chengalpattu 603308, Tamil Nadu, India
[6] Karpagam Acad Higher Educ, Dept Mech Engn, Coimbatore 641021, Tamil Nadu, India
[7] Bharath Inst Higher Educ & Res, Ctr Mat Engn & Regenerat Med, Chennai 600073, Tamil Nadu, India
[8] Amity Univ, Dept Mech Engn, Dubai 345019, U Arab Emirates
[9] King Saud Univ, Coll Engn, Mech Engn Dept, Riyadh 11421, Saudi Arabia
[10] Univ Technol Sydney, FEIT, Sch Civil & Environm Engn, Ultimo, NSW, Australia
关键词
Flat-plate collector; Heating; ventilation; and air conditioning; Nanofluid; Thermal performance: coefficient of performance;
D O I
10.1007/s10973-024-12994-z
中图分类号
O414.1 [热力学];
学科分类号
摘要
Energy consumption in buildings is a major contributor to India's greenhouse gas emissions, accounting for a significant portion of the country's environmental impact. Consequently, there is a crucial need to prioritize energy-efficient heating, ventilation, and air conditioning technologies supported by solar thermal collectors to minimize the environmental consequences associated with building energy consumption. In this investigation, a flat-plate collector thermal performance is enhanced by the adaptations of 0.1 volume percentage concentrations of aluminum oxide (Al2O3), nickel (Ni), and combinations of Al2O3-Ni nanoparticles dispersed in water as hybrid nanofluid at 0.028, 0.041, 0.055, and 0.068 kgs(-1) flow rates. Influences of nanofluid and flow rate conditions on thermal and exergy efficiency, heat transfer coefficient, entropy generation, and coefficient of performance of FPC are experimentally analyzed and spot that the hybrid nanofluid (Al2O3/Ni/water) own higher thermal and exergy efficiency of 72.8% and 22.9%, better heat transfer coefficient of 133.2 Wm(-2) K-1, and high COP of 7.9 under high flow rate. These output results are higher than those of the water-fluid-operated FPC.
引用
收藏
页码:5047 / 5057
页数:11
相关论文
共 50 条
  • [21] Effects of CuO/water nanofluid on the efficiency of a flat-plate solar collector
    Moghadam, Ali Jabari
    Farzane-Gord, Mahmood
    Sajadi, Mahmood
    Hoseyn-Zadeh, Monireh
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2014, 58 : 9 - 14
  • [22] ANALYSIS AND PERFORMANCE OF FLAT-PLATE SOLAR COLLECTOR ARRAYS
    WANG, XA
    WU, LG
    SOLAR ENERGY, 1990, 45 (02) : 71 - 78
  • [23] PERFORMANCE OF A BLACK LIQUID FLAT-PLATE SOLAR COLLECTOR
    MINARDI, JE
    CHUANG, HN
    SOLAR ENERGY, 1975, 17 (03) : 179 - 183
  • [24] FLAT-PLATE SOLAR COLLECTOR PERFORMANCE AT HIGH TEMPERATURES
    SELCUK, MK
    SOLAR ENERGY, 1964, 8 (02) : 57 - &
  • [25] Analysis of selective absorber coatings on thermal performance of the solar flat-plate collector
    Han, Xiaodong
    Zhang, Shiwei
    Chen, Chuan
    Tang, Yong
    MATERIAL DESIGN, PROCESSING AND APPLICATIONS, PARTS 1-4, 2013, 690-693 : 2093 - 2097
  • [26] Thermal performance of a nanofluid-based flat plate solar collector: A transient numerical study
    Genc, Alper Mete
    Ezan, Mehmet Akif
    Turgut, Alpaslan
    APPLIED THERMAL ENGINEERING, 2018, 130 : 395 - 407
  • [27] FLAT-PLATE SOLAR COLLECTOR MATERIALS
    DAY, ML
    REMER, DS
    HYATT, D
    SAMPE QUARTERLY-SOCIETY FOR THE ADVANCEMENT OF MATERIAL AND PROCESS ENGINEERING, 1979, 11 (01): : 28 - 37
  • [28] Macro Flat-Plate Solar Thermal Collector With Rectangular Channels
    Ibrahim, Oussama
    Younes, Rafic
    Ibrahim, Mohamad
    JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2018, 140 (06):
  • [29] THERMAL CONTACT CONDUCTANCE OF FLAT-PLATE SOLAR COLLECTOR MATERIALS
    SOMERS, RR
    MILLER, JW
    MCCAFFERTY, RH
    FLETCHER, LS
    JOURNAL OF ENERGY, 1980, 4 (05): : 233 - 236
  • [30] Experimental Study of the Performance of a Flat-Plate Collector Using Cu-Water Nanofluid
    Jamal-Abad, Milad Tajik
    Zamzamian, A.
    Imani, E.
    Mansouri, M.
    JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 2013, 27 (04) : 756 - 760