Impact of hybrid nanofluid on thermal behavior of flat-plate solar collector: performance study

被引:8
|
作者
Selvam, Lokesh [1 ]
Aruna, M. [2 ]
Hossain, Ismail [3 ]
Venkatesh, R. [4 ]
Karthigairajan, M. [5 ]
Prabagaran, S. [6 ]
Mohanavel, V. [7 ,8 ]
Seikh, A. H. [9 ]
Kalam, Md. Abul [10 ]
机构
[1] SRM Inst Sci & Technol, Dept Mech Engn, Ramapuram Campus, Chennai 600089, Tamil Nadu, India
[2] Liwa Coll, Fac Business, Dept Ind Management, Abu Dhabi, U Arab Emirates
[3] Ural Fed Univ, Dept Nucl & Renewable Energy, Ekaterinburg 620002, Russia
[4] Saveetha Univ, Saveetha Inst Med & Tech Sci SIMATS, Saveetha Sch Engn, Dept Mech Engn, Chennai 602105, Tamil Nadu, India
[5] Karpaga Vinayaga Coll Engn & Technol, Dept Mech Engn, Chengalpattu 603308, Tamil Nadu, India
[6] Karpagam Acad Higher Educ, Dept Mech Engn, Coimbatore 641021, Tamil Nadu, India
[7] Bharath Inst Higher Educ & Res, Ctr Mat Engn & Regenerat Med, Chennai 600073, Tamil Nadu, India
[8] Amity Univ, Dept Mech Engn, Dubai 345019, U Arab Emirates
[9] King Saud Univ, Coll Engn, Mech Engn Dept, Riyadh 11421, Saudi Arabia
[10] Univ Technol Sydney, FEIT, Sch Civil & Environm Engn, Ultimo, NSW, Australia
关键词
Flat-plate collector; Heating; ventilation; and air conditioning; Nanofluid; Thermal performance: coefficient of performance;
D O I
10.1007/s10973-024-12994-z
中图分类号
O414.1 [热力学];
学科分类号
摘要
Energy consumption in buildings is a major contributor to India's greenhouse gas emissions, accounting for a significant portion of the country's environmental impact. Consequently, there is a crucial need to prioritize energy-efficient heating, ventilation, and air conditioning technologies supported by solar thermal collectors to minimize the environmental consequences associated with building energy consumption. In this investigation, a flat-plate collector thermal performance is enhanced by the adaptations of 0.1 volume percentage concentrations of aluminum oxide (Al2O3), nickel (Ni), and combinations of Al2O3-Ni nanoparticles dispersed in water as hybrid nanofluid at 0.028, 0.041, 0.055, and 0.068 kgs(-1) flow rates. Influences of nanofluid and flow rate conditions on thermal and exergy efficiency, heat transfer coefficient, entropy generation, and coefficient of performance of FPC are experimentally analyzed and spot that the hybrid nanofluid (Al2O3/Ni/water) own higher thermal and exergy efficiency of 72.8% and 22.9%, better heat transfer coefficient of 133.2 Wm(-2) K-1, and high COP of 7.9 under high flow rate. These output results are higher than those of the water-fluid-operated FPC.
引用
收藏
页码:5047 / 5057
页数:11
相关论文
共 50 条
  • [1] Energetic and Exergetic Performance of a Solar Flat-Plate Collector Working With Cu Nanofluid
    Shamshirgaran, SeyedReza
    Assadi, Morteza Khalaji
    Al-Kayiem, Hussain H.
    Sharma, Korada Viswanatha
    JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2018, 140 (03):
  • [2] Thermal performance evaluation of a nanofluid-based flat-plate solar collector: An experimental study and analytical modeling
    Jouybari, H. Javaniyan
    Nimvari, M. Eshagh
    Saedodin, S.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2019, 137 (05) : 1757 - 1774
  • [3] Performance Analysis of Flat-Plate Solar Collector Having Silver Nanofluid as a Working Fluid
    Polvongsri, Sarawut
    Kiatsiriroat, Tanongkiat
    HEAT TRANSFER ENGINEERING, 2014, 35 (13) : 1183 - 1191
  • [4] Smart modeling by using artificial intelligent techniques on thermal performance of flat-plate solar collector using nanofluid
    Sadeghzadeh, Milad
    Ahmadi, Mohammad Hossein
    Kahani, Mostafa
    Sakhaeinia, Hossein
    Chaji, Hossein
    Chen, Lingen
    ENERGY SCIENCE & ENGINEERING, 2019, 7 (05) : 1649 - 1658
  • [5] Thermal Performance of Two Phase Thermosyphon Flat-Plate Solar Collectors Using Nanofluid
    Chougule, Sandesh S.
    Sahu, S. K.
    Pise, Ashok T.
    JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2014, 136 (01):
  • [6] Effects of CuO/water nanofluid on the efficiency of a flat-plate solar collector
    Moghadam, Ali Jabari
    Farzane-Gord, Mahmood
    Sajadi, Mahmood
    Hoseyn-Zadeh, Monireh
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2014, 58 : 9 - 14
  • [7] Numerical Study of Thermal Transport in a Flat-Plate Solar Collector Using Novel Absorber Plate
    Hamzah, Hudhaifa
    Hasan, Salim Ibrahim
    Kucuka, Serhan
    ENVIRONMENTALLY-BENIGN ENERGY SOLUTIONS, 2020, : 649 - 662
  • [8] Performance enhancement of flat-plate and parabolic trough solar collector using nanofluid for water heating application
    Abu-Zeid, Mostafa AbdEl-Rady
    Elhenawy, Yasser
    Bassyouni, Mohamed
    Majozi, Thokozani
    Toderas, Monica
    Al-Qabandi, O. A.
    Kishk, Sameh Said
    RESULTS IN ENGINEERING, 2024, 21
  • [9] Study on Efficiency of Flat-Plate Solar Collector Using Nanofluids
    Lee, Seung-Hyun
    Jang, Seok Pil
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS B, 2013, 37 (09) : 799 - 805
  • [10] Evaluation of nanoparticle shape effect on a nanofluid based flat-plate solar collector efficiency
    Amin, Toghi Eshghi
    Roghayeh, Ghasempour
    Fatemeh, Razi
    Fatollah, Pourfayaz
    ENERGY EXPLORATION & EXPLOITATION, 2015, 33 (05) : 659 - 676