Accurate global and local 3D alignment of cryo-EM density maps using local spatial structural features

被引:3
|
作者
He, Bintao [1 ]
Zhang, Fa [2 ]
Feng, Chenjie [3 ]
Yang, Jianyi [1 ]
Gao, Xin [4 ]
Han, Renmin [1 ]
机构
[1] Shandong Univ, Res Ctr Math & Interdisciplinary Sci, Qingdao 266237, Peoples R China
[2] Beijing Inst Technol, Sch Med Technol, Beijing 100081, Peoples R China
[3] Ningxia Med Univ, Coll Med Informat & Engn, Yinchuan 750004, Peoples R China
[4] King Abdullah Univ Sci & Technol KAUST, Computat Biosci Res Ctr CBRC, Comp Elect & Math Sci & Engn CEMSE Div, Thuwal 23955, Saudi Arabia
基金
中国国家自然科学基金;
关键词
MIXTURE MODEL; HISTOGRAMS; SURFACE;
D O I
10.1038/s41467-024-45861-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Advances in cryo-electron microscopy (cryo-EM) imaging technologies have led to a rapidly increasing number of cryo-EM density maps. Alignment and comparison of density maps play a crucial role in interpreting structural information, such as conformational heterogeneity analysis using global alignment and atomic model assembly through local alignment. Here, we present a fast and accurate global and local cryo-EM density map alignment method called CryoAlign, that leverages local density feature descriptors to capture spatial structure similarities. CryoAlign is a feature-based cryo-EM map alignment tool, in which the employment of feature-based architecture enables the rapid establishment of point pair correspondences and robust estimation of alignment parameters. Extensive experimental evaluations demonstrate the superiority of CryoAlign over the existing methods in terms of both alignment accuracy and speed. Density map alignment is a fundamental step in Cryo-EM data postprocessing. Here, authors propose an accurate global and local density map alignment method using local density features.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] 3D ear recognition using global and local features
    Ganapathi, Iyyakutti Iyappan
    Prakash, Surya
    IET BIOMETRICS, 2018, 7 (03) : 232 - 241
  • [32] Refinement of cryo-EM 3D maps with a self-supervised denoising model: crefDenoiser
    Agarwal, Ishaant
    Kaczmar-Michalska, Joanna
    Norrelykke, Simon F.
    Rzepiela, Andrzej J.
    IUCRJ, 2024, 11 : 821 - 830
  • [33] COVARIANCE ESTIMATION USING CONJUGATE GRADIENT FOR 3D CLASSIFICATION IN CRYO-EM
    Anden, Joakim
    Katsevich, Eugene
    Singer, Amit
    2015 IEEE 12TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2015, : 200 - 204
  • [34] Surface-Constrained 3D Reconstruction in Cryo-EM
    Barthel, Andrew C.
    Tagare, Hemant
    Sigworth, Fred J.
    2011 CONFERENCE RECORD OF THE FORTY-FIFTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS (ASILOMAR), 2011, : 1026 - 1030
  • [35] Analysis of discrete local variability and structural covariance in macromolecular assemblies using Cryo-EM and focused classification
    Zhang, Cheng
    Cantara, William
    Jeon, Youngmin
    Musier-Forsyth, Karin
    Grigorieff, Nikolaus
    Lyumkis, Dmitry
    ULTRAMICROSCOPY, 2019, 203 : 170 - 180
  • [36] Accurate flexible refinement for atomic-level protein structure using cryo-EM density maps and deep learning
    Zhang, Biao
    Liu, Dong
    Zhang, Yang
    Shen, Hong-Bin
    Zhang, Gui-Jun
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (02)
  • [37] A Multi-model Approach to Assessing Local and Global Cryo-EM Map Quality
    Herzik, Mark A., Jr.
    Fraser, James S.
    Lander, Gabriel C.
    STRUCTURE, 2019, 27 (02) : 344 - +
  • [38] Residue-wise local quality estimation for protein models from cryo-EM maps
    Genki Terashi
    Xiao Wang
    Sai Raghavendra Maddhuri Venkata Subramaniya
    John J. G. Tesmer
    Daisuke Kihara
    Nature Methods, 2022, 19 : 1116 - 1125
  • [39] A robust normalized local filter to estimate compositional heterogeneity directly from cryo-EM maps
    Forsberg, Bjoern O.
    Shah, Pranav N. M.
    Burt, Alister
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [40] A robust normalized local filter to estimate compositional heterogeneity directly from cryo-EM maps
    Björn O. Forsberg
    Pranav N. M. Shah
    Alister Burt
    Nature Communications, 14 (1)