Accurate global and local 3D alignment of cryo-EM density maps using local spatial structural features

被引:3
|
作者
He, Bintao [1 ]
Zhang, Fa [2 ]
Feng, Chenjie [3 ]
Yang, Jianyi [1 ]
Gao, Xin [4 ]
Han, Renmin [1 ]
机构
[1] Shandong Univ, Res Ctr Math & Interdisciplinary Sci, Qingdao 266237, Peoples R China
[2] Beijing Inst Technol, Sch Med Technol, Beijing 100081, Peoples R China
[3] Ningxia Med Univ, Coll Med Informat & Engn, Yinchuan 750004, Peoples R China
[4] King Abdullah Univ Sci & Technol KAUST, Computat Biosci Res Ctr CBRC, Comp Elect & Math Sci & Engn CEMSE Div, Thuwal 23955, Saudi Arabia
基金
中国国家自然科学基金;
关键词
MIXTURE MODEL; HISTOGRAMS; SURFACE;
D O I
10.1038/s41467-024-45861-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Advances in cryo-electron microscopy (cryo-EM) imaging technologies have led to a rapidly increasing number of cryo-EM density maps. Alignment and comparison of density maps play a crucial role in interpreting structural information, such as conformational heterogeneity analysis using global alignment and atomic model assembly through local alignment. Here, we present a fast and accurate global and local cryo-EM density map alignment method called CryoAlign, that leverages local density feature descriptors to capture spatial structure similarities. CryoAlign is a feature-based cryo-EM map alignment tool, in which the employment of feature-based architecture enables the rapid establishment of point pair correspondences and robust estimation of alignment parameters. Extensive experimental evaluations demonstrate the superiority of CryoAlign over the existing methods in terms of both alignment accuracy and speed. Density map alignment is a fundamental step in Cryo-EM data postprocessing. Here, authors propose an accurate global and local density map alignment method using local density features.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Using Combined Features to Analyze Atomic Structures Derived from Cryo-EM Density Maps
    Chen, Lin
    He, Jing
    ACM-BCB'18: PROCEEDINGS OF THE 2018 ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, 2018, : 651 - 655
  • [22] Auto3DCryoMap: an automated particle alignment approach for 3D cryo-EM density map reconstruction
    Adil Al-Azzawi
    Anes Ouadou
    Ye Duan
    Jianlin Cheng
    BMC Bioinformatics, 21
  • [23] Auto3DCryoMap: an automated particle alignment approach for 3D cryo-EM density map reconstruction
    Al-Azzawi, Adil
    Ouadou, Anes
    Duan, Ye
    Cheng, Jianlin
    BMC BIOINFORMATICS, 2020, 21 (Suppl 21)
  • [24] Likelihood-based interactive local docking into cryo-EM maps in ChimeraX
    Read, Randy J.
    Pettersen, Eric F.
    Mccoy, Airlie J.
    Croll, Tristan I.
    Terwilliger, Thomas C.
    Poon, Billy K.
    Meng, Elaine C.
    Liebschner, Dorothee
    Adams, Paul D.
    ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2024, 80 : 588 - 598
  • [25] CryoTEN: efficiently enhancing cryo-EM density maps using transformers
    Selvaraj, Joel
    Wang, Liguo
    Cheng, Jianlin
    BIOINFORMATICS, 2025, 41 (03)
  • [26] DeepAlign, a 3D alignment method based on regionalized deep learning for Cryo-EM
    Jimenez-Moreno, A.
    Strelak, D.
    Filipovic, J.
    Carazo, J. M.
    Sorzano, C. O. S.
    JOURNAL OF STRUCTURAL BIOLOGY, 2021, 213 (02)
  • [27] Correction to: Auto3DCryoMap: an automated particle alignment approach for 3D cryo-EM density map reconstruction
    Adil Al-Azzawi
    Anes Ouadou
    Ye Duan
    Jianlin Cheng
    BMC Bioinformatics, 23
  • [28] Reference-based restoration of local contrast for cryo-EM density interpretation
    Jakobi, Arjen
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2018, 74 : E152 - E152
  • [29] Local switch and global tuning or the decoding ribosome: A cryo-em story.
    Gabashvili, I
    Agrawal, R
    Grassucci, R
    Squires, CS
    Dahlberg, AE
    Frank, J
    BIOPHYSICAL JOURNAL, 2000, 78 (01) : 169A - 169A
  • [30] Fast Cryo-EM Image Alignment Algorithm Using Power Spectrum Features
    Chen, Yu-Xuan
    Xie, Rui
    Yang, Yang
    He, Lin
    Feng, Dagan
    Shen, Hong-Bin
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2021, 61 (09) : 4795 - 4806