Deep-stratification of the cardiovascular risk by ultrasound carotid artery images

被引:0
作者
del Mar Vila, Maria [1 ,2 ]
Gago, Lucas [3 ]
Perez-Sanchez, Pablo [1 ,4 ]
Grau, Maria [5 ,6 ,7 ]
Remeseiro, Beatriz [8 ]
Igual, Laura [3 ]
机构
[1] Inst Salud Carlos III, CIBER Enfermedades Cardiovasc, Monforte Lemos 3-5,Pabellon 11, Madrid 28029, Spain
[2] IMIM, Inst Hosp Mar Invest Med, Dr Aiguader 88, Barcelona 08003, Spain
[3] Univ Barcelona, Dept Matemat & Informat, Gran Via Corts Catalanes 585, Barcelona 08007, Spain
[4] Inst Biomed Res Salamanca IBSAL, P de San Vicente,182, Salamanca 37007, Spain
[5] Univ Barcelona, Dept Med, Carrer Casanova 143, Barcelona 08036, Spain
[6] August Pi i Sunyer Biomed Res Inst IDIBAPS, C Rossello,149, Barcelona 08036, Spain
[7] Inst Salud Carlos III, CIBER Epidemiol & Salud Publ, Monforte Lemos 3-5,Pabellon 11, Madrid 28029, Spain
[8] Univ Oviedo, Dept Comp Sci, Campus Gijon S-N, Gijon 33203, Spain
关键词
Cardiovascular event; Survival model; Reclassification; Convolutional neural networks; Machine learning; INTIMA-MEDIA THICKNESS; VALIDATION; PREDICTION; DISEASE; PLAQUE; DERIVATION;
D O I
10.1016/j.bspc.2024.106035
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Cardiovascular risk estimation functions predict the risk of cardiovascular events with clinical data and survival models. These functions accurately stratify individuals into low, moderate, and high -risk categories. However, they tend to classify a considerable number of individuals into the middle -risk category, and often, a subsequent reclassification into high -risk groups is required. Atherosclerosis is the leading cause of cardiovascular events, and ultrasound images of the Carotid Artery (CA) can detect its burden by measuring the carotid intimamedia thickness and identifying atherosclerotic plaques. Current risk estimation functions do not consider ultrasound imaging. This paper proposes the use of deep ultrasound CA image features in survival models to improve risk stratification. In particular, we define new deep CA image features, extracting information from a convolutional neural network, and add them to an existing risk function. The experiments carried out show that using deep image features improves the AUC of the risk function to 0.842, and these features are enough to replace the information provided by blood biomarkers. Furthermore, the use of these features resulted in a 20% improvement in the reclassification of risk categories, specifically for individuals who suffered an event, as shown by the net reclassification improvement metric.
引用
收藏
页数:10
相关论文
共 38 条
[11]   Risk functions and the primary prevention of cardiovascular disease [J].
Grau, Maria ;
Marrugat, Jaume .
REVISTA ESPANOLA DE CARDIOLOGIA, 2008, 61 (04) :404-416
[12]  
Grau M, 2012, REV ESP CARDIOL, V65, P1086, DOI [10.1016/j.recesp.2012.04.026, 10.1016/j.rec.2012.04.019]
[13]   Ultrasonic echolucent carotid plaques predict future strokes [J].
Gronholdt, MLM ;
Nordestgaard, BG ;
Schroeder, TV ;
Vorstrup, S ;
Sillesen, H .
CIRCULATION, 2001, 104 (01) :68-73
[14]   EVALUATING THE YIELD OF MEDICAL TESTS [J].
HARRELL, FE ;
CALIFF, RM ;
PRYOR, DB ;
LEE, KL ;
ROSATI, RA .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 1982, 247 (18) :2543-2546
[15]  
Harrell FE, 1996, STAT MED, V15, P361, DOI 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO
[16]  
2-4
[17]   Predicting cardiovascular risk in England and Wales: prospective derivation and validation of QRISK2 [J].
Hippisley-Cox, Julia ;
Coupland, Carol ;
Vinogradova, Yana ;
Robson, John ;
Minhas, Rubin ;
Sheikh, Aziz ;
Brindle, Peter .
BMJ-BRITISH MEDICAL JOURNAL, 2008, 336 (7659) :1475-+
[18]  
Inoue Eisuke, 2018, CRAN
[19]   The utility of ultrasonic tissue characterization of carotid plaque in the prediction of cardiovascular events in diabetic patients [J].
Irie, Yoko ;
Katakami, Naoto ;
Kaneto, Hideaki ;
Takahara, Mitsuyoshi ;
Nishio, Mayu ;
Kasami, Ryuichi ;
Sakamoto, Ken'ya ;
Umayahara, Yutaka ;
Sumitsuji, Satoru ;
Ueda, Yasunori ;
Kosugi, Keisuke ;
Shimomura, Iichiro .
ATHEROSCLEROSIS, 2013, 230 (02) :399-405
[20]  
James G, 2013, SPRINGER TEXTS STAT, V103, P1, DOI 10.1007/978-1-4614-7138-7_1