Rotation angle dependent Li intercalation and the induced phase transition in bilayer MoTe2

被引:2
作者
Zhao, Yiwei [1 ]
Li, Yan [1 ]
Liu, Mingxia [2 ]
Xu, Kewei [2 ]
Ma, Fei [1 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Shaanxi, Peoples R China
[2] Xian Univ, Shaanxi Key Lab Surface Engn & Remfg, Xian 710065, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Phase transition; DFT calculation; Li intercalation; Twisted; MOS2; BANDS;
D O I
10.1016/j.surfin.2023.103497
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, taking twisted bilayer MoTe2 (tb-MoTe2) as an example, density functional theory (DFT) calcula-tions are done to investigate the interlayer rotation angle dependent lithium intercalation as well as the induced 2H -> 1T phase transition in two-dimensional layered materials. Both static equipotential energy diagrams and dynamic ab initio molecular dynamics simulations (AIMD) are utilized to obtain the reliable lithium diffusion pathways and barriers. The results reveal that the interlayer rotation leads to increased interlayer separation in tb-MoTe2, and provides a stable environment for Li insertion. Moreover, the diffusion barrier is substantially reduced with increasing twist angle, promoting the fast Li diffusion. At room temperature, the mobility of Li in tb-MoTe2 with the twist angle of theta = 21.79'and theta = 60'is increased by a factor of 10 and 105, respectively. The energy barrier for the 2H -> 1T phase transition is lowered from 1.23 eV in the non-twisted MoTe2 to 0.88 eV in the tb-MoTe2 with a twist angle theta = 21.79'for a given concentration of inserted Li. Above all, the enhanced diffusion and lower critical electron concentration facilitate the 2H-1T phase transition in tb-MoTe2. The results provide valuable insights into the non-uniform intercalation and present an opportunity to modulate the phase transition of twisted 2D systems.
引用
收藏
页数:10
相关论文
共 49 条
[1]  
Acerce M, 2015, NAT NANOTECHNOL, V10, P313, DOI [10.1038/nnano.2015.40, 10.1038/NNANO.2015.40]
[2]   Moire bands in twisted double-layer graphene [J].
Bistritzer, Rafi ;
MacDonald, Allan H. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (30) :12233-12237
[3]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[4]   Band structure of MoS2, MoSe2, and α-MoTe2:: Angle-resolved photoelectron spectroscopy and ab initio calculations -: art. no. 235305 [J].
Böker, T ;
Severin, R ;
Müller, A ;
Janowitz, C ;
Manzke, R ;
Voss, D ;
Krüger, P ;
Mazur, A ;
Pollmann, J .
PHYSICAL REVIEW B, 2001, 64 (23)
[5]   Density functional calculations on the intricacies of Moire patterns on graphite [J].
Campanera, J. M. ;
Savini, G. ;
Suarez-Martinez, I. ;
Heggie, M. I. .
PHYSICAL REVIEW B, 2007, 75 (23)
[6]   Unconventional superconductivity in magic-angle graphene superlattices [J].
Cao, Yuan ;
Fatemi, Valla ;
Fang, Shiang ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Kaxiras, Efthimios ;
Jarillo-Herrero, Pablo .
NATURE, 2018, 556 (7699) :43-+
[7]   Numerical studies of confined states in rotated bilayers of graphene [J].
de Laissardiere, G. Trambly ;
Mayou, D. ;
Magaud, L. .
PHYSICAL REVIEW B, 2012, 86 (12)
[8]   Localization of Dirac Electrons in Rotated Graphene Bilayers [J].
de laissardiere, G. Trambly ;
Mayou, D. ;
Magaud, L. .
NANO LETTERS, 2010, 10 (03) :804-808
[9]   Hofstadter's butterfly and the fractal quantum Hall effect in moire superlattices [J].
Dean, C. R. ;
Wang, L. ;
Maher, P. ;
Forsythe, C. ;
Ghahari, F. ;
Gao, Y. ;
Katoch, J. ;
Ishigami, M. ;
Moon, P. ;
Koshino, M. ;
Taniguchi, T. ;
Watanabe, K. ;
Shepard, K. L. ;
Hone, J. ;
Kim, P. .
NATURE, 2013, 497 (7451) :598-602
[10]   Electronic structure of two-dimensional transition metal dichalcogenide bilayers from ab initio theory [J].
Debbichi, L. ;
Eriksson, O. ;
Lebegue, S. .
PHYSICAL REVIEW B, 2014, 89 (20)