A Relativistic Abelian Chern-Simons Model on Graph

被引:0
作者
Zhao, Juan [1 ]
机构
[1] Renmin Univ China, Sch Math, Beijing 100872, Peoples R China
关键词
Chern-Simons equation on graph; Variational method; Mountain-pass theorem; EQUATIONS; VORTICES; EXISTENCE;
D O I
10.1007/s41980-023-00830-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider a relativistic Abelian Chern-Simons equation { Delta u=lambda(a(b-a)e(u)-b(b-a)e(v)+a(2)e(2u)-abe2v+b(b-a)e(u+v))+4 pi(N1)& sum;(j=1)delta(pj)Delta v=lambda(-b(b-a)e(u)+a(b-a)e(v)-abe(2u)+a(2)e(2v)+b(b-a)e(u+v))+4 pi(N2)& sum;(j=1)delta(qj), on a connected finite graph G=(V,E), where lambda>0 is a constant;a>b>0;N1andN2are positive integers;p1,p2,...,pN1andq1,q2,...,qN2denote distinctvertices ofV. Additionally,delta pjand delta qjrepresent the Dirac delta masses located atverticespjandqj. By employing the method of constrained minimization, we prove that there exists a critical value lambda 0, such that the above equation admits a solutionwhen lambda >=lambda 0. Furthermore, we employ the mountain pass theorem developed by Ambrosetti-Rabinowitz to establish that the equation has at least two solutions when lambda>lambda 0.
引用
收藏
页数:22
相关论文
共 33 条
  • [1] ABRIKOSOV AA, 1957, SOV PHYS JETP-USSR, V5, P1174
  • [2] Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
  • [3] Aubin T., 1982, GRUND MATH WISS, DOI 10.1007/978-1-4612-5734-9
  • [4] Multiple solutions for ageneralized Chern-Simons equation on graphs
    Chao, Ruixue
    Hou, Songbo
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 519 (01)
  • [5] Existence theorems for non-Abelian Chern-Simons-Higgs vortices with flavor
    Chen, Shouxin
    Han, Xiaosen
    Lozano, Gustavo
    Schaposnik, Fidel A.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (06) : 2458 - 2498
  • [6] Gao J, 2022, arXiv
  • [7] KAZDAN-WARNER EQUATION ON INFINITE GRAPHS
    Ge, Huabin
    Jiang, Wenfeng
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 55 (05) : 1091 - 1101
  • [8] Yamabe equations on infinite graphs
    Ge, Huabin
    Jiang, Wenfeng
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 460 (02) : 885 - 890
  • [9] Existence of positive solutions to some nonlinear equations on locally finite graphs
    Grigor'yan, Alexander
    Lin Yong
    Yang YunYan
    [J]. SCIENCE CHINA-MATHEMATICS, 2017, 60 (07) : 1311 - 1324
  • [10] Yamabe type equations on graphs
    Grigor'yan, Alexander
    Lin, Yong
    Yang, Yunyan
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (09) : 4924 - 4943