Strategies to improve genome editing efficiency in crop plants

被引:4
作者
Aravind, B. [1 ]
Molla, Kutubuddin [2 ]
Mangrauthia, Satendra K. [3 ]
Mohannath, Gireesha [1 ]
机构
[1] Birla Inst Technol & Sci, Dept Biol Sci, Hyderabad Campus, Hyderabad 500078, Telangana, India
[2] ICAR Natl Rice Res Inst, Cuttack 753006, Odisha, India
[3] ICAR Indian Inst Rice Res, Hyderabad 500030, Telangana, India
关键词
Genome editing; CRISPR-Cas; Transgene-free; Viral vectors; Histone deacetylase inhibitors; TRBO vector; DOUBLE-STRANDED DNA; TARGETED MUTAGENESIS; MOSAIC-VIRUS; HISTONE ACETYLATION; GENE REPAIR; CAS9; OVEREXPRESSION; AGROBACTERIUM; REPLICATION; CRISPR/CAS9;
D O I
10.1007/s13562-023-00860-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Genome editing technology comprises site-directed mutagenesis of genomes, involving alterations of few bases to precise replacement of a fragment or an entire gene sequence. Among multiple types of genome editing technologies developed, CRISPR-Cas9 and its latest variants have been revolutionizing the field of genetic engineering and plant biotechnology. Despite several advantages the CRISPR-Cas9 technology offers, it often suffers from low efficiency in creating desirable mutants in several crop plant species. In this review, we discuss various emerging strategies to improve genome editing efficiency in crop plants. The strategies include increased expression of genome editing components using high efficiency viral vectors, employment of inhibitors of chromatin modifiers, and using plant DNA viruses as donor DNA carriers. Additionally, we also discuss strategies to obtain transgene-free genome edited crops.
引用
收藏
页码:661 / 672
页数:12
相关论文
共 101 条
[1]   New breeding technique "genome editing" for crop improvement: applications, potentials and challenges [J].
Aglawe, Supriya B. ;
Barbadikar, Kalyani M. ;
Mangrauthia, Satendra K. ;
Madhav, M. Sheshu .
3 BIOTECH, 2018, 8 (08)
[2]   Efficient Virus-Mediated Genome Editing in Plants Using the CRISPR/Cas9 System [J].
Ali, Zahir ;
Abul-faraj, Aala ;
Li, Lixin ;
Ghosh, Neha ;
Piatek, Marek ;
Mahjoub, Ali ;
Aouida, Mustapha ;
Piatek, Agnieszka ;
Baltes, Nicholas J. ;
Voytas, Daniel F. ;
Dinesh-Kumar, Savithramma ;
Mahfouz, Magdy M. .
MOLECULAR PLANT, 2015, 8 (08) :1288-1291
[3]   Potato Virus X Vector-Mediated DNA-Free Genome Editing in Plants [J].
Ariga, Hirotaka ;
Toki, Seiichi ;
Ishibashi, Kazuhiro .
PLANT AND CELL PHYSIOLOGY, 2020, 61 (11) :1946-1953
[4]  
Baltes NJ, 2015, NAT PLANTS, V1, DOI [10.1038/NPLANTS.2015.145, 10.1038/nplants.2015.145]
[5]   DNA Replicons for Plant Genome Engineering [J].
Baltes, Nicholas J. ;
Gil-Humanes, Javier ;
Cermak, Tomas ;
Atkins, Paul A. ;
Voytas, Daniel F. .
PLANT CELL, 2014, 26 (01) :151-163
[6]  
Bisaro David M., 1996, V31, P833
[7]   CRISPR mediated genome engineering to develop climate smart rice: Challenges and opportunities [J].
Biswal, Akshaya K. ;
Mangrauthia, Satendra K. ;
Reddy, M. Raghurami ;
Yugandhar, Poli .
SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2019, 96 :100-106
[8]   The heat is on: a simple method to increase genome editing efficiency in plants [J].
Blomme, Jonas ;
Develtere, Ward ;
Kose, Ayse ;
Ribera, Julia Arraiza ;
Brugmans, Christophe ;
Jaraba-Wallace, Jessica ;
Decaestecker, Ward ;
Rombaut, Debbie ;
Baekelandt, Alexandra ;
Fernandez, Alvaro Daniel Fernandez ;
Van Breusegem, Frank ;
Inze, Dirk ;
Jacobs, Thomas .
BMC PLANT BIOLOGY, 2022, 22 (01)
[9]   Histone Acetylation, VERNALIZATION INSENSITIVE 3, FLOWERING LOCUS C, and the Vernalization Response [J].
Bond, Donna M. ;
Dennis, Elizabeth S. ;
Pogson, Barry J. ;
Finnegan, E. Jean .
MOLECULAR PLANT, 2009, 2 (04) :724-737
[10]   Gene repair in mammalian cells is stimulated by the elongation of S phase and transient stalling of replication forks [J].
Brachman, EE ;
Kmiec, EB .
DNA REPAIR, 2005, 4 (04) :445-457