REFINEMENT ON SPECTRAL TUR\'AN'S THEOREM

被引:9
|
作者
Li, Yongtao [1 ]
Peng, Yuejian [1 ]
机构
[1] Hunan Univ, Sch Math, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Turan theorem; spectral radius; Zykov symmetrization; DENSE NEIGHBORHOODS; GRAPHS; EIGENVALUES; BOUNDS; RADIUS;
D O I
10.1137/22M1507814
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A well-known result in extremal spectral graph theory, known as Nosal's theorem,states that if Gis a triangle-free graph onnvertices, then\lambda (G)\leq \lambda (K\lfloor n2\rfloor ,\lceil n2\rceil ), equality holds if andonly ifG=K\lfloor n2\rfloor ,\lceil n2\rceil . Nikiforov [Linear Algebra Appl.,427 (2007), pp. 183--189] extended Nosal'stheorem toKr+1-free graphs for every integerr\geq 2. This is now known as the spectral Tur\'antheorem. Recently, Lin, Ning, and Wu [Combin. Probab. Comput., 30 (2021), pp. 258--270] proveda refinement on Nosal's theorem for nonbipartite triangle-free graphs. In this paper, we providealternative proofs for both the result of Nikiforov and the result of Lin, Ning, and Wu. Moreover,our new proof can allow us to extend the later result to non-r-partiteKr+1-free graphs. Our resultrefines the theorem of Nikiforov and it also can be viewed as a spectral version of a theorem ofBrouwer
引用
收藏
页码:2462 / 2485
页数:24
相关论文
共 50 条
  • [21] A SPECTRAL COMMUTANT LIFTING THEOREM
    BERCOVICI, H
    FOIAS, C
    TANNENBAUM, A
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 325 (02) : 741 - 763
  • [22] Spectral analogues of Erdos' theorem on Hamilton-connected graphs
    Wei, Jia
    You, Zhifu
    Lai, Hong-Jian
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 340 : 242 - 250
  • [23] The spectral radius of matrix continuous refinement operators
    Victor Didenko
    Wee Ping Yeo
    Advances in Computational Mathematics, 2010, 33 : 113 - 127
  • [24] Spectral refinement on quasi-diagonal matrices
    Ahues, M
    Largillier, A
    d'Almeida, FD
    Vasconcelos, PB
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 401 : 109 - 117
  • [25] The spectral radius of matrix continuous refinement operators
    Didenko, Victor
    Yeo, Wee Ping
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2010, 33 (01) : 113 - 127
  • [26] A spectral excess theorem for nonregular graphs
    Lee, Guang-Siang
    Weng, Chih-wen
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2012, 119 (07) : 1427 - 1431
  • [27] A spectral excess theorem for normal digraphs
    Omidi, G. R.
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2015, 42 (02) : 537 - 554
  • [28] A strengthening of the spectral chromatic critical edge theorem: Books and theta graphs
    Zhai, Mingqing
    Lin, Huiqiu
    JOURNAL OF GRAPH THEORY, 2023, 102 (03) : 502 - 520
  • [29] Combinatorial Diophantine equations and a refinement of a theorem on separated variables equations
    Bilu, Yuri F.
    Fuchs, Clemens
    Luca, Florian
    Pinter, Akos
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2013, 82 (01): : 219 - 254
  • [30] TURAN'S THEOREM IMPLIES STANLEY'S BOUND
    Nikiforov, V
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2020, 40 (02) : 601 - 605