Pulmonary nodule detection on lung parenchyma images using hyber-deep algorithm

被引:4
作者
Fang, Da [1 ,2 ]
Jiang, Hao [1 ,2 ]
Chen, Wenyang [1 ,2 ]
Qin, Zhibao [1 ,2 ]
Shi, Junsheng [1 ,2 ]
Zhang, Jun [1 ,2 ]
机构
[1] Yunnan Normal Univ, Sch Phys & Elect Informat, Kunming 650500, Peoples R China
[2] Yunnan Key Lab Optoelect Informat Technol, Kunming 650500, Peoples R China
关键词
Lung nodule detection; Information security; Transfer learning; Internet of things; NEURAL-NETWORKS;
D O I
10.1016/j.heliyon.2023.e17599
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The incidence of lung cancer has seen a significant increase in recent times, leading to a rise in fatalities. The detection of pulmonary nodules from CT images has emerged as an effective method to aid in the diagnosis of lung cancer. Ensuring information security holds utmost significance in the detection of nodules, with particular attention given to safeguarding patient privacy within the context of the Internet of Things (IoT). In this regard, migration learning emerges as a potent technique for preserving the confidentiality of patient data. Firstly, we applied several data-preprocessing steps such as lung segmentation based on K-Means, denoising methods, and lung parenchyma extraction through a dedicated medical IoT network. We used the Microsoft Common Object in Context (MS-COCO) dataset to pre-train the detection framework and fine-tuned it with the Lung Nodule Analysis 16 (LUNA16) dataset to adapt to nodule detection tasks. To evaluate the effectiveness of our proposed pipeline, we conducted extensive experiments that included subjective evaluation of detection results and quantitative data analysis. The results of these experiments demonstrated the efficacy of our approach in accurately detecting pulmonary nodules. Our study provides a promising framework for trustworthy pulmonary nodule detection on lung parenchyma images using a secured hyper-deep algorithm, which has the potential to improve lung cancer diagnosis and reduce fatalities associated with it.
引用
收藏
页数:11
相关论文
共 27 条
[1]  
Afag S., 2020, Journal of Computational Science Intelligent Technologies, V1, P15, DOI [10.53409/mnaa.jcsit1103, DOI 10.53409/MNAA.JCSIT1103]
[2]   Lung Nodule Detection via Deep Reinforcement Learning [J].
Ali, Issa ;
Hart, Gregory R. ;
Gunabushanam, Gowthaman ;
Liang, Ying ;
Muhammad, Wazir ;
Nartowt, Bradley ;
Kane, Michael ;
Ma, Xiaomei ;
Deng, Jun .
FRONTIERS IN ONCOLOGY, 2018, 8
[3]   Cascade R-CNN: Delving into High Quality Object Detection [J].
Cai, Zhaowei ;
Vasconcelos, Nuno .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :6154-6162
[4]   Deep learning classification of lung cancer histology using CT images [J].
Chaunzwa, Tafadzwa L. ;
Hosny, Ahmed ;
Xu, Yiwen ;
Shafer, Andrea ;
Diao, Nancy ;
Lanuti, Michael ;
Christiani, David C. ;
Mak, Raymond H. ;
Aerts, Hugo J. W. L. .
SCIENTIFIC REPORTS, 2021, 11 (01)
[5]   Hybrid Task Cascade for Instance Segmentation [J].
Chen, Kai ;
Pang, Jiangmiao ;
Wang, Jiaqi ;
Xiong, Yu ;
Li, Xiaoxiao ;
Sun, Shuyang ;
Feng, Wansen ;
Liu, Ziwei ;
Shi, Jianping ;
Ouyang, Wanli ;
Loy, Chen Change ;
Lin, Dahua .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :4969-4978
[6]   Gaussian YOLOv3: An Accurate and Fast Object Detector Using Localization Uncertainty for Autonomous Driving [J].
Choi, Jiwoong ;
Chun, Dayoung ;
Kim, Hyun ;
Lee, Hyuk-Jae .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :502-511
[7]   Computational resources for radiomics [J].
Court, Laurence E. ;
Fave, Xenia ;
Mackin, Dennis ;
Lee, Joonsang ;
Yang, Jinzhong ;
Zhang, Lifei .
TRANSLATIONAL CANCER RESEARCH, 2016, 5 (04) :340-348
[8]   Unsupervised Multi-Discriminator Generative Adversarial Network for Lung Nodule Malignancy Classification [J].
Kuang, Yan ;
Lan, Tian ;
Peng, Xueqiao ;
Selasi, Gati Elvis ;
Liu, Qiao ;
Zhang, Junyi .
IEEE ACCESS, 2020, 8 :77725-77734
[9]   Software Vulnerability Detection Using Deep Neural Networks: A Survey [J].
Lin, Guanjun ;
Wen, Sheng ;
Han, Qing-Long ;
Zhang, Jun ;
Xiang, Yang .
PROCEEDINGS OF THE IEEE, 2020, 108 (10) :1825-1848
[10]   Microsoft COCO: Common Objects in Context [J].
Lin, Tsung-Yi ;
Maire, Michael ;
Belongie, Serge ;
Hays, James ;
Perona, Pietro ;
Ramanan, Deva ;
Dollar, Piotr ;
Zitnick, C. Lawrence .
COMPUTER VISION - ECCV 2014, PT V, 2014, 8693 :740-755