Limit theorems of invariant measures for multivalued McKean-Vlasov stochastic differential equations

被引:0
|
作者
Qiao, Huijie [1 ]
机构
[1] Southeast Univ, Sch Math, Nanjing 211189, Jiangsu, Peoples R China
关键词
Multivalued McKean-Vlasov; stochastic differential equations; The exponential ergodicity; The convergence of strong solutions; The convergence of invariant; measures; SDES; CONVERGENCE; EXISTENCE;
D O I
10.1016/j.jmaa.2023.127532
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The work concerns invariant measures for multivalued McKean-Vlasov stochastic differential equations. First of all, we prove the exponential ergodicity of these equations. Then for a sequence of these equations, when their coefficients converge in the suitable sense, the strong convergence of corresponding strong solutions are presented. Finally, based on the convergence of these solutions, we establish the convergence of corresponding invariant measures with respect to the 1-Wasserstein distance.& COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Stability for Multivalued McKean-Vlasov Stochastic Differential Equations
    Qiao, Huijie
    Gong, Jun
    FRONTIERS OF MATHEMATICS, 2025,
  • [2] Stability of McKean-Vlasov stochastic differential equations and applications
    Bahlali, Khaled
    Mezerdi, Mohamed Amine
    Mezerdi, Brahim
    STOCHASTICS AND DYNAMICS, 2020, 20 (01)
  • [3] Wong-Zakai approximations and support theorems for stochastic McKean-Vlasov equations
    Xu, Jie
    Gong, Jiayin
    FORUM MATHEMATICUM, 2022, 34 (06) : 1411 - 1432
  • [4] Superposition and mimicking theorems for conditional McKean-Vlasov equations
    Lacker, Daniel
    Shkolnikov, Mykhaylo
    Zhang, Jiacheng
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2023, 25 (08) : 3229 - 3288
  • [5] Multilevel Picard approximations for McKean-Vlasov stochastic differential equations
    Hutzenthaler, Martin
    Kruse, Thomas
    Nguyen, Tuan Anh
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 507 (01)
  • [6] Compactification in optimal control of McKean-Vlasov stochastic differential equations
    Mezerdi, Mohamed Amine
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2021, 42 (04): : 1161 - 1177
  • [7] Parametric inference for ergodic McKean-Vlasov stochastic differential equations
    Genon-Catalot, Valentine
    Laredo, Catherine
    BERNOULLI, 2024, 30 (03) : 1971 - 1997
  • [8] Stochastic averaging principle for multi-valued McKean-Vlasov stochastic differential equations
    Shen, Guangjun
    Xiang, Jie
    Wu, Jiang-Lun
    APPLIED MATHEMATICS LETTERS, 2023, 141
  • [9] Inference for ergodic McKean-Vlasov stochastic differential equations with polynomial interactions
    Genon-Catalot, Valentine
    Laredo, Catherine
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (04): : 2668 - 2693
  • [10] A flexible split-step scheme for solving McKean-Vlasov stochastic differential equations
    Chen, Xingyuan
    dos Reis, Goncalo
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 427