Fog Density Evaluation by Combining Image Grayscale Entropy and Directional Entropy

被引:1
作者
Cao, Rong [1 ]
Wang, Xiaochun [1 ]
Li, Hongjun [1 ]
机构
[1] Beijing Forestry Univ, Coll Sci, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
fog density level; combined entropy; directional entropy; grayscale entropy;
D O I
10.3390/atmos14071125
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The fog density level, as one of the indicators of weather conditions, will affect the management decisions of transportation management agencies. This paper proposes an image-based method to estimate fog density levels to improve the accuracy and efficiency of analyzing fine meteorological conditions and validating fog density predictions. The method involves two types of image entropy: a two-dimensional directional entropy derived from four-direction Sobel operators, and a combined entropy that integrates the image directional entropy and grayscale entropy. For evaluating the performance of the proposed method, an image test set and an image training set are constructed; and each image is labeled as heavy fog, moderate fog, light fog, or fog-free according to the fog density level of the image based on a user study. Using our method, the average accuracy rates of image fog level estimation were 77.27% and 79.39% on the training set using the five-fold cross-validation and the test set, respectively. Our experimental results demonstrate the effectiveness of the proposed combined entropy for image-based fog density level estimation.
引用
收藏
页数:19
相关论文
共 43 条
  • [1] NTIRE 2019 Image Dehazing Challenge Report
    Ancuti, Codruta O.
    Ancuti, Cosmin
    Timofte, Radu
    Van Gool, Luc
    Zhang, Lei
    Yang, Ming-Hsuan
    Guo, Tiantong
    Li, Xuelu
    Cherukuri, Venkateswararao
    Monga, Vishal
    Jiang, Hao
    Yang, Siyuan
    Liu, Yan
    Qu, Xiaochao
    Wan, Pengfei
    Park, Dongwon
    Chun, Se Young
    Hong, Ming
    Huang, Jinying
    Chen, Yizi
    Chen, Shuxin
    Wang, Bomin
    Michelini, Pablo Navarrete
    Liu, Hanwen
    Zhu, Dan
    Liu, Jing
    Santra, Sanchayan
    Mondal, Ranjan
    Chanda, Bhabatosh
    Morales, Peter
    Klinghoffer, Tzofi
    Le Manh Quan
    Kim, Yong-Guk
    Liang, Xiao
    Li, Runde
    Pan, Jinshan
    Tang, Jinhui
    Purohit, Kuldeep
    Suin, Maitreya
    Rajagopalan, A. N.
    Schettini, Raimondo
    Bianco, Simone
    Piccoli, Flavio
    Cusano, C.
    Celona, Luigi
    Hwang, Sunhee
    Ma, Yu Seung
    Byun, Hyeran
    Murala, Subrahmanyam
    Dudhane, Akshay
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2019), 2019, : 2241 - 2253
  • [2] Ancuti CO, 2019, IEEE IMAGE PROC, P1014, DOI [10.1109/icip.2019.8803046, 10.1109/ICIP.2019.8803046]
  • [3] O-HAZE: a dehazing benchmark with real hazy and haze-free outdoor images
    Ancuti, Codruta O.
    Ancuti, Cosmin
    Timofte, Radu
    De Vleeschouwer, Christophe
    [J]. PROCEEDINGS 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2018, : 867 - 875
  • [4] Ancuti C, 2016, IEEE IMAGE PROC, P2226, DOI 10.1109/ICIP.2016.7532754
  • [5] Fog Prediction for Road Traffic Safety in a Coastal Desert Region: Improvement of Nowcasting Skills by the Machine-Learning Approach
    Bartokova, Ivana
    Bott, Andreas
    Bartok, Juraj
    Gera, Martin
    [J]. BOUNDARY-LAYER METEOROLOGY, 2015, 157 (03) : 501 - 516
  • [6] A Novel Comprehensive Evaluation Method for Estimating the Bank Profile Shape and Dimensions of Stable Channels Using the Maximum Entropy Principle
    Bonakdari, Hossein
    Gholami, Azadeh
    Mosavi, Amir
    Kazemian-Kale-Kale, Amin
    Ebtehaj, Isa
    Azimi, Amir Hossein
    [J]. ENTROPY, 2020, 22 (11) : 1 - 23
  • [7] How to react to shallow water hydrodynamics: The larger benthic foraminifera solution
    Briguglio, Antonino
    Hohenegger, Johann
    [J]. MARINE MICROPALEONTOLOGY, 2011, 81 (1-2) : 63 - 76
  • [8] Entropy Estimators in SAR Image Classification
    Cassetti, Julia
    Delgadino, Daiana
    Rey, Andrea
    Frery, Alejandro C.
    [J]. ENTROPY, 2022, 24 (04)
  • [9] Referenceless Prediction of Perceptual Fog Density and Perceptual Image Defogging
    Choi, Lark Kwon
    You, Jaehee
    Bovik, Alan Conrad
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (11) : 3888 - 3901
  • [10] Choi LK, 2014, IEEE SW SYMP IMAG, P165, DOI 10.1109/SSIAI.2014.6806055