Opportunities for diamond quantum metrology in biological systems

被引:6
作者
Belser, Sophia [1 ]
Hart, Jack [1 ]
Gu, Qiushi [1 ]
Shanahan, Louise [1 ]
Knowles, Helena S. S. [1 ]
机构
[1] Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England
基金
英国工程与自然科学研究理事会;
关键词
NITROGEN-VACANCY CENTERS; MAGNETIC-RESONANCE-SPECTROSCOPY; NANODIAMOND PROBES; HIGH-TEMPERATURE; SILICON-CARBIDE; CELLULAR UPTAKE; SPIN-COHERENCE; SINGLE SPINS; TRACKING; THERMOMETRY;
D O I
10.1063/5.0147469
中图分类号
O59 [应用物理学];
学科分类号
摘要
Sensors that harness quantum mechanical effects can enable high sensitivity and high spatial resolution probing of their environment. The nitrogen-vacancy defect in diamond, a single, optically accessible electronic spin, is a promising quantum sensor that can operate in soft and living systems and provides nanoscale spatial resolution when hosted inside a diamond nanoparticle. Nanodiamond quantum sensors are nontoxic, amenable to surface functionalization, and can be introduced into a variety of living systems. The optical readout of the spin provides detailed information about the local electromagnetic and thermal environment in a noninvasive way. In this Perspective, we introduce the different modalities that nanodiamond quantum sensors offer, highlight recent progress in quantum sensing of biological systems, and discuss remaining challenges and directions for future efforts.
引用
收藏
页数:10
相关论文
共 124 条
[31]   Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine [J].
Donahue, Nathan D. ;
Acar, Handan ;
Wilhelm, Stefan .
ADVANCED DRUG DELIVERY REVIEWS, 2019, 143 :68-96
[32]   Three-dimensional single-particle tracking in live cells: news from the third dimension [J].
Dupont, A. ;
Gorelashvili, M. ;
Schueller, V. ;
Wehnekamp, F. ;
Arcizet, D. ;
Katayama, Y. ;
Lamb, D. C. ;
Heinrich, D. .
NEW JOURNAL OF PHYSICS, 2013, 15
[33]   High-Pressure, High-Temperature Synthesis of Nanodiamond from Adamantane [J].
Ekimov, E. A. ;
Kondrina, K. M. ;
Mordvinova, N. E. ;
Lebedev, O. I. ;
Pasternak, D. G. ;
Vlasov, I. I. .
INORGANIC MATERIALS, 2019, 55 (05) :437-442
[34]   Association of Nanodiamond Rotation Dynamics with Cell Activities by Translation-Rotation Tracking [J].
Feng, Xi ;
Leong, Weng-Hang ;
Xia, Kangwei ;
Liu, Chu-Feng ;
Liu, Gang-Qin ;
Rendler, Torsten ;
Wrachtrup, Joerg ;
Liu, Ren-Bao ;
Li, Quan .
NANO LETTERS, 2021, 21 (08) :3393-3400
[35]   Wide-Field Magnetic Field and Temperature Imaging Using Nanoscale Quantum Sensors [J].
Foy, Christopher ;
Zhang, Lenan ;
Trusheim, Matthew E. ;
Bagnall, Kevin R. ;
Walsh, Michael ;
Wang, Evelyn N. ;
Englund, Dirk R. .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (23) :26525-26533
[36]   Pure nanodiamonds for levitated optomechanics in vacuum [J].
Frangeskou, A. C. ;
Rahman, A. T. M. A. ;
Gines, L. ;
Mandal, S. ;
Williams, O. A. ;
Barker, P. F. ;
Morley, G. W. .
NEW JOURNAL OF PHYSICS, 2018, 20
[37]   Diamond quantum thermometry: from foundations to applications [J].
Fujiwara, Masazumi ;
Shikano, Yutaka .
NANOTECHNOLOGY, 2021, 32 (48)
[38]   Real-time nanodiamond thermometry probing in vivo thermogenic responses [J].
Fujiwara, Masazumi ;
Sun, Simo ;
Dohms, Alexander ;
Nishimura, Yushi ;
Suto, Ken ;
Takezawa, Yuka ;
Oshimi, Keisuke ;
Zhao, Li ;
Sadzak, Nikola ;
Umehara, Yumi ;
Teki, Yoshio ;
Komatsu, Naoki ;
Benson, Oliver ;
Shikano, Yutaka ;
Kage-Nakadai, Eriko .
SCIENCE ADVANCES, 2020, 6 (37)
[39]   Monitoring spin coherence of single nitrogen-vacancy centers in nanodiamonds during pH changes in aqueous buffer solutions [J].
Fujiwara, Masazumi ;
Tsukahara, Ryuta ;
Sera, Yoshihiko ;
Yukawa, Hiroshi ;
Baba, Yoshinobu ;
Shikata, Shinichi ;
Hashimoto, Hideki .
RSC ADVANCES, 2019, 9 (22) :12606-12614
[40]   All-Optical Cryogenic Thermometry Based on Nitrogen-Vacancy Centers in Nanodiamonds [J].
Fukami, M. ;
Yale, C. G. ;
Andrich, P. ;
Liu, X. ;
Heremans, F. J. ;
Nealey, P. F. ;
Awschalom, D. D. .
PHYSICAL REVIEW APPLIED, 2019, 12 (01)