Adomian decomposition method for solution of fourteenth order boundary value problems

被引:2
作者
Khalid, Aasma [2 ]
Naeem, Muhammad Nawaz [3 ]
Jamal, Neelam [2 ,3 ]
Askar, Sameh [4 ]
Ahmad, Hijaz [1 ]
机构
[1] Int Telemat Univ Uninettuno, Sect Math, Emanuele II 39, I-00186 Rome, Italy
[2] Govt Coll Women Univ Faisalabad, Dept Math, Faisalabad 38023, Pakistan
[3] Govt Coll Univ Faisalabad, Dept Math, Faisalabad 38023, Pakistan
[4] King Saud Univ, Coll Sci, Dept Stat & Operat Res, POB 2455, Riyadh 11451, Saudi Arabia
来源
OPEN PHYSICS | 2023年 / 21卷 / 01期
关键词
nonlinear; linear; Adomian decomposition method; absolute errors; fourteenth order; NUMERICAL-SOLUTION; MODELS;
D O I
10.1515/phys-2022-0236
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Differential equations (DEs) performed a vital role in the implementation of almost all the mechanical, physical, or biological processes. Higher order DEs had always been challenging to solve for the researchers so numerous numerical techniques were developed to attain the vital numerical approximations of such types of problems. In this work, highly advanced numerical techniques are established for the approximation of the fourteenth (14th)-order boundary value problems using Adomian decomposition method. The mathematical outcomes of the equations are attained in the form of convergent series that have effortlessly assessable components having step size h = 10. Some numerical examples are also deliberated to demonstrate the capability and application of the established procedure.
引用
收藏
页数:15
相关论文
共 38 条
[21]   A new and general fractional Lagrangian approach: A capacitor microphone case [J].
Jajarmi, A. ;
Baleanu, D. ;
Vahid, K. Zarghami ;
Pirouz, H. Mohammadi ;
Asad, J. H. .
RESULTS IN PHYSICS, 2021, 31
[22]   A New Iterative Method for the Numerical Solution of High-Order Non-linear Fractional Boundary Value Problems [J].
Jajarmi, Amin ;
Baleanu, Dumitru .
FRONTIERS IN PHYSICS, 2020, 8
[23]  
Jebari R, 2012, J CHROMATOGR B, V12, P2229
[24]  
KHALID AA, 2018, CEYLON J SCI, V47, P253, DOI DOI 10.4038/cjs.v47i3.7541
[25]   Numerical solution of time-fractional coupled Korteweg-de Vries and Klein-Gordon equations by local meshless method [J].
Khan, Muhammad Nawaz ;
Ahmad, Imtiaz ;
Akgul, Ali ;
Ahmad, Hijaz ;
Thounthong, Phatiphat .
PRAMANA-JOURNAL OF PHYSICS, 2021, 95 (01)
[26]  
Lamnii A, 2008, APPL MATH E-NOTES, V8, P171
[27]   Numerical solution of two-term time-fractional PDE models arising in mathematical physics using local meshless method [J].
Li, Jun-Feng ;
Ahmad, Imtiaz ;
Ahmad, Hijaz ;
Shah, Dawood ;
Chu, Yu-Ming ;
Thounthong, Phatiphat ;
Ayaz, Muhammad .
OPEN PHYSICS, 2020, 18 (01) :1063-1072
[28]  
Marasi H, 2011, AUS J BASIC APPL SCI, V5, P2106
[29]  
Mushanyn J, 2016, APPL MATH COMPUT, V5, P283
[30]  
Olga F, 2010, J APPL MATH, V3, P91