Roadmap on artificial intelligence and big data techniques for superconductivity

被引:31
作者
Yazdani-Asrami, Mohammad [1 ]
Song, Wenjuan [1 ]
Morandi, Antonio [2 ]
De Carne, Giovanni [3 ]
Murta-Pina, Joao [4 ]
Pronto, Anabela [4 ]
Oliveira, Roberto [3 ]
Grilli, Francesco [3 ]
Pardo, Enric [5 ]
Parizh, Michael [6 ]
Shen, Boyang [7 ]
Coombs, Tim [7 ]
Salmi, Tiina [8 ]
Wu, Di [8 ]
Coatanea, Eric [8 ]
Moseley, Dominic A. [9 ]
Badcock, Rodney A. [9 ]
Zhang, Mengjie [10 ]
Marinozzi, Vittorio [11 ]
Tran, Nhan [11 ]
Wielgosz, Maciej [12 ]
Skoczen, Andrzej [12 ]
Tzelepis, Dimitrios [13 ]
Meliopoulos, Sakis [14 ]
Vilhena, Nuno [4 ]
Sotelo, Guilherme [15 ]
Jiang, Zhenan [10 ]
Grosse, Veit [16 ]
Bagni, Tommaso [17 ]
Mauro, Diego [17 ]
Senatore, Carmine [17 ]
Mankevich, Alexey [18 ]
Amelichev, Vadim [18 ]
Samoilenkov, Sergey [19 ]
Yoon, Tiem Leong [20 ]
Wang, Yao [21 ]
Camata, Renato P. [22 ]
Chen, Cheng-Chien [22 ]
Madureira, Ana Maria [23 ,24 ]
Abraham, Ajith [25 ,26 ]
机构
[1] Univ Glasgow, James Watt Sch Engn, Prop Electrificat & Superconduct Grp, Glasgow G12 8QQ, Scotland
[2] Univ Bologna, Dept Elect Elect & Informat Engn, I-40136 Bologna, Italy
[3] Karlsruhe Inst Technol, Karlsruhe, Germany
[4] Ctr Technol & Syst UNINOVA CTS UNINOVA, P-2829516 Caparica, Portugal
[5] Slovak Acad Sci, Inst Elect Engn, Bratislava, Slovakia
[6] Gen Elect Res, One Res Circle, Niskayuna, NY 12309 USA
[7] Univ Cambridge, Dept Engn, Cambridge CB3 0FA, England
[8] Tampere Univ, Tampere, Finland
[9] Victoria Univ Wellington, Paihau Robinson Res Inst, Lower Hutt 5046, New Zealand
[10] Victoria Univ Wellington, Sch Engn & Comp Sci, Wellington 6140, New Zealand
[11] Fermi Natl Accelerator Lab Fermilab, Tech Div, Batavia, IL 60510 USA
[12] AGH Univ Sci & Technol, Krakow, Poland
[13] Univ Strathclyde, Dept Elect & Elect Engn, Glasgow, Scotland
[14] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
[15] Fluminense Fed Univ UFF, Dept Elect Engn, Niteroi, RJ, Brazil
[16] THEVA Dunnschichttech GmbH, Ismaning, Germany
[17] Univ Geneva, Dept Quantum Matter Phys, Geneva, Switzerland
[18] S Innovations, Moscow, Russia
[19] SuperOx, Moscow, Russia
[20] Univ Sains Malaysia, Sch Phys, Usm 11800, Penang, Malaysia
[21] Clemson Univ, Dept Phys & Astron, Clemson, SC 29631 USA
[22] Univ Alabama Birmingham, Dept Phys, Birmingham, AL 35294 USA
[23] Polytech Porto, ISRC, ISEP, Rua Dr Antonio Bernardino Almeida, Porto, Portugal
[24] INOV Inst Syst & Comp Engn, Technol & Sci, Lisbon, Portugal
[25] Machine Intelligence Res Labs MIR Labs, Auburn, WA 98071 USA
[26] FLAME Univ, Fac Comp & Data Sci, Pune, Maharashtra, India
关键词
applied superconductivity; artificial intelligence; big data; deep learning; machine learning; neural network; NEURAL-NETWORKS; FAULT LOCATION; PROTECTION; DESIGN; SYSTEM; FIELD; CHALLENGES; PERFORMANCE; SIMULATION; MODEL;
D O I
10.1088/1361-6668/acbb34
中图分类号
O59 [应用物理学];
学科分类号
摘要
This paper presents a roadmap to the application of AI techniques and big data (BD) for different modelling, design, monitoring, manufacturing and operation purposes of different superconducting applications. To help superconductivity researchers, engineers, and manufacturers understand the viability of using AI and BD techniques as future solutions for challenges in superconductivity, a series of short articles are presented to outline some of the potential applications and solutions. These potential futuristic routes and their materials/technologies are considered for a 10-20 yr time-frame.
引用
收藏
页数:57
相关论文
共 174 条
  • [1] A new benchmark problem for electromagnetic modelling of superconductors: the high-Tcsuperconducting dynamo
    Ainslie, Mark
    Grilli, Francesco
    Queval, Loic
    Pardo, Enric
    Perez-Mendez, Fernando
    Mataira, Ratu
    Morandi, Antonio
    Ghabeli, Asef
    Bumby, Chris
    Brambilla, Roberto
    [J]. SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2020, 33 (10)
  • [2] A survey on evolutionary machine learning
    Al-Sahaf, Harith
    Bi, Ying
    Chen, Qi
    Lensen, Andrew
    Mei, Yi
    Sun, Yanan
    Tran, Binh
    Xue, Bing
    Zhang, Mengjie
    [J]. JOURNAL OF THE ROYAL SOCIETY OF NEW ZEALAND, 2019, 49 (02) : 205 - 228
  • [3] Resilient Protection System Through Centralized Substation Protection
    Albinali, Hussain F.
    Meliopoulos, A. P. Sakis
    [J]. IEEE TRANSACTIONS ON POWER DELIVERY, 2018, 33 (03) : 1418 - 1427
  • [4] SQUIDs in biomagnetism: a roadmap towards improved healthcare
    不详
    [J]. SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2016, 29 (11)
  • [5] [Anonymous], 2021, IEEE Spectrum
  • [6] Ansell PJ, 2022, IEEE ELECTRIF MAG, V10, P6, DOI 10.1109/MELE.2022.3165721
  • [7] Robustness against SEU of an artificial neural network space application
    Assoum, A
    Radi, NE
    Velazco, R
    Elie, F
    Ecoffet, R
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1996, 43 (03) : 973 - 978
  • [8] Numerical calculation of trapped magnetic field for square and cylindrical superconductors
    Aydiner, A
    Yanmaz, E
    [J]. SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2005, 18 (07) : 1010 - 1015
  • [9] Machine learning applied to X-ray tomography as a new tool to analyze the voids in RRP Nb3Sn wires
    Bagni, T.
    Bovone, G.
    Rack, A.
    Mauro, D.
    Barth, C.
    Matera, D.
    Buta, F.
    Senatore, C.
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [10] Formation and propagation of cracks in RRP Nb3Sn wires studied by deep learning applied to x-ray tomography
    Bagni, Tommaso
    Mauro, Diego
    Majkut, Marta
    Rack, Alexander
    Senatore, Carmine
    [J]. SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2022, 35 (10)