Mechanical Stability Analysis of a DFIG Floating Offshore Wind Turbine using an Oriented-Control Model

被引:4
作者
Ospina-Alvarez, A. F. [1 ]
Santos, M. [2 ]
机构
[1] Univ Complutense Madrid, Fac Phys, Madrid 28040, Spain
[2] Univ Complutense Madrid, Inst Knowledge Technol, Madrid 28040, Spain
关键词
Barge-type floating offshore wind turbine; control-oriented model; double-fed induction generator; mathematical optimization; mechanical stability; PITCH CONTROL; SYSTEM; SIMULATION; SPEED;
D O I
10.1109/TLA.2023.10015130
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article develops an oriented-control simulation model of a doubly fed inductor generator (DFIG) floating offshore wind turbine (FOWT). The main goal of this model is to allow it to analyze the influence of the wind turbine control on the mechanical stability of the floating turbine, studying how the control action affects the vibrations of the tower. A mathematical optimization control and fixed pitch angle have been implemented. The model has been simulation tested, obtaining results close to the nominal power generation and acceptable oscillation values for the operating conditions. Despite the non-linear dynamics of the system, the model allows it the simulation of different capacity power generation systems, specifically floating offshore wind turbines, and the study of the vibrations of the floating structure.
引用
收藏
页码:91 / 97
页数:7
相关论文
共 30 条
[11]   Electric grid dependence on the configuration of a small-scale wind and solar power hybrid system [J].
Mikati, M. ;
Santos, M. ;
Armenta, C. .
RENEWABLE ENERGY, 2013, 57 :587-593
[12]   Modeling and Simulation of a Hybrid Wind and Solar Power System for the Analysis of Electricity Grid Dependency [J].
Mikati, M. ;
Santos, M. ;
Armenta, C. .
REVISTA IBEROAMERICANA DE AUTOMATICA E INFORMATICA INDUSTRIAL, 2012, 9 (03) :267-281
[13]   Comparative study on transient stability analysis of wind turbine generator system using different drive train models [J].
Muyeen, S. M. ;
Ali, Md. Hasan ;
Takahashi, R. ;
Murata, T. ;
Tamura, J. ;
Tomaki, Y. ;
Sakahara, A. ;
Sasano, E. .
IET RENEWABLE POWER GENERATION, 2007, 1 (02) :131-141
[14]   Individual blade pitch control of floating offshore wind turbines [J].
Namik, H. ;
Stol, K. .
WIND ENERGY, 2010, 13 (01) :74-85
[15]   Large band simulation of the wind speed for real time wind turbine simulators [J].
Nichita, C ;
Luca, D ;
Dakyo, B ;
Ceanga, E .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2002, 17 (04) :523-529
[16]   Nonlinear Maximum Power Point Tracking Control Method for Wind Turbines Considering Dynamics [J].
Qi, Liangwen ;
Zheng, Liming ;
Bai, Xingzhi ;
Chen, Qin ;
Chen, Jiyao ;
Chen, Yan .
APPLIED SCIENCES-BASEL, 2020, 10 (03)
[17]  
Santos M., 2022, ACM T INTEL SYST TEC, V10, P938
[18]   A synthesis of feasible control methods for floating offshore wind turbine system dynamics [J].
Shah, Kamran Ali ;
Meng, Fantai ;
Li, Ye ;
Nagamune, Ryozo ;
Zhou, Yarong ;
Ren, Zhengru ;
Jiang, Zhiyu .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2021, 151
[19]   Mathematical modeling of a horizontal axis shrouded wind turbine [J].
Siavash, Nemat Keramat ;
Najafi, G. ;
Hashjin, Teymour Tavakkoli ;
Ghobadian, Barat ;
Mahmoodi, Esmail .
RENEWABLE ENERGY, 2020, 146 :856-866
[20]   Improving Wind Turbine Pitch Control by Effective Wind Neuro-Estimators [J].
Sierra-Garcia, J. Enrique ;
Santos, Matilde .
IEEE ACCESS, 2021, 9 :10413-10425