Random Forest Algorithm for the Strength Prediction of Geopolymer Stabilized Clayey Soil

被引:26
|
作者
Zeini, Husein Ali [1 ]
Al-Jeznawi, Duaa [2 ]
Imran, Hamza [3 ]
Bernardo, Luis Filipe Almeida [4 ]
Al-Khafaji, Zainab [5 ]
Ostrowski, Krzysztof Adam [6 ]
机构
[1] Al Furat Al Awsat Tech Univ, Najaf Tech Inst, Dept Civil Engn, Najaf Munazira Str, Najaf 54003, Iraq
[2] Al Nahrain Univ, Dept Civil Engn, Baghdad 10081, Iraq
[3] Alkarkh Univ Sci, Coll Energy & Environm Sci, Dept Environm Sci, Baghdad 10081, Iraq
[4] Univ Beira Interior, Dept Civil Engn & Architecture, P-6201001 Covilha, Portugal
[5] Al Mustaqbal Univ Coll, Bldg & Construct Tech Engn Dept, Hillah 51001, Iraq
[6] Cracow Univ Technol, Fac Civil Engn, 24 Warszawska Str, PL-31155 Krakow, Poland
关键词
Random Forest; machine learning; SHAP; geopolymer; clayey soil; unconfined compressive strength; prediction; UNCONFINED COMPRESSIVE STRENGTH; FLY-ASH; BOTTOM ASH; MODELS; SLAG;
D O I
10.3390/su15021408
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Unconfined compressive strength (UCS) can be used to assess the applicability of geopolymer binders as ecologically friendly materials for geotechnical projects. Furthermore, soft computing technologies are necessary since experimental research is often challenging, expensive, and time-consuming. This article discusses the feasibility and the performance required to predict UCS using a Random Forest (RF) algorithm. The alkali activator studied was sodium hydroxide solution, and the considered geopolymer source material was ground-granulated blast-furnace slag and fly ash. A database with 283 clayey soil samples stabilized with geopolymer was considered to determine the UCS. The database was split into two sections for the development of the RF model: the training data set (80%) and the testing data set (20%). Several measures, including coefficient of determination (R), mean absolute error (MAE), and root mean square error (RMSE), were used to assess the effectiveness of the RF model. The statistical findings of this study demonstrated that the RF is a reliable model for predicting the UCS value of geopolymer-stabilized clayey soil. Furthermore, based on the obtained values of RMSE = 0.9815 and R-2 = 0.9757 for the testing set, respectively, the RF approach showed to provide excellent results for predicting unknown data within the ranges of examined parameters. Finally, the SHapley Additive exPlanations (SHAP) analysis was implemented to identify the most influential inputs and to quantify their behavior of input variables on the UCS.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Dimensionality reduction and prediction of soil consolidation coefficient using random forest coupling with Relief algorithm
    HaiBang LY
    HuongLan Thi VU
    Lanh Si HO
    Binh Thai PHAM
    Frontiers of Structural and Civil Engineering, 2022, 16 (02) : 224 - 238
  • [32] Prediction of the yield strength of as-cast alloys using the random forest algorithm
    Zhang, Wei
    Li, Peiyou
    Wang, Lin
    Fu, Xiaoling
    Wan, Fangyi
    Wang, Yongshan
    Shu, Linsen
    Yong, Long-quan
    MATERIALS TODAY COMMUNICATIONS, 2024, 38
  • [33] A novel framework for strength prediction of geopolymer mortar: Renovative precursor effect
    Kurt, Zafer
    Yilmaz, Yildiran
    Cakmak, Talip
    Ustabas, Ilker
    JOURNAL OF BUILDING ENGINEERING, 2023, 76
  • [34] Dimensionality reduction and prediction of soil consolidation coefficient using random forest coupling with Relief algorithm
    Hai-Bang Ly
    Huong-Lan Thi Vu
    Lanh Si Ho
    Binh Thai Pham
    Frontiers of Structural and Civil Engineering, 2022, 16 : 224 - 238
  • [35] Improvement of Computational Efficiency and Accuracy by Firefly Algorithm and Random Forest for Compressive Strength Modeling of Recycled Concrete
    Liu, Yong
    Wang, Yang
    Zhou, Mengmeng
    Huang, Jiandong
    SUSTAINABILITY, 2023, 15 (12)
  • [36] Prediction of Mechanical Strength by Using an Artificial Neural Network and Random Forest Algorithm
    Upreti, Kamal
    Verma, Manvendra
    Agrawal, Meena
    Garg, Jatinder
    Kaushik, Rekha
    Agrawal, Chinmay
    Singh, Divakar
    Narayanasamy, Rajamani
    JOURNAL OF NANOMATERIALS, 2022, 2022
  • [37] Strength and Durability of Granular Soil Stabilized with FA-GGBS Geopolymer
    Samantasinghar, Subhashree
    Singh, Suresh Prasad
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2021, 33 (06)
  • [38] Churn Prediction in Telecoms Using a Random Forest Algorithm
    Naidu, Gireen
    Zuva, Tranos
    Sibanda, Elias Mbongeni
    DATA SCIENCE AND ALGORITHMS IN SYSTEMS, 2022, VOL 2, 2023, 597 : 282 - 292
  • [39] Research on strength prediction of crack rock mass based on random forest algorithm
    Chao Yuan
    Huimei Zhang
    Lei Wang
    Gengshe Yang
    Xiaoyu Liu
    Xiangzhen Meng
    Shiguan Chen
    Bulletin of Engineering Geology and the Environment, 2024, 83
  • [40] Research on strength prediction of crack rock mass based on random forest algorithm
    Yuan, Chao
    Zhang, Huimei
    Wang, Lei
    Yang, Gengshe
    Liu, Xiaoyu
    Meng, Xiangzhen
    Chen, Shiguan
    BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT, 2024, 83 (04)