Favorable Start-Up behavior of polymer electrolyte membrane water electrolyzers

被引:20
作者
Rauls, Edward [1 ]
Hehemann, Michael [1 ]
Keller, Roger [1 ]
Scheepers, Fabian [1 ]
Mueller, Martin [1 ]
Stolten, Detlef [2 ,3 ]
机构
[1] Forschungszentrum Juelich, Inst Energy & Climate Res, IEK 14 Electrochem Proc Engn, D-52425 Julich, Germany
[2] Forschungszentrum Juelich, Inst Energy & Climate Res, IEK 3 Techno Econ Syst Anal, D-52425 Julich, Germany
[3] Rhein Westfal TH Aachen, Chair Fuel Cells, Aachen, Germany
关键词
PEM electrolysis; Start-up; Heat-up; Efficiency; System modeling; Dynamic simulation; PEM ELECTROLYZER; HEAT-CAPACITY; POWER; HYDROGEN; STORAGE; COST; TEMPERATURE; MODEL;
D O I
10.1016/j.apenergy.2022.120350
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Dynamically-operated water electrolyzers enable the production of green hydrogen for cross-sector applications while simultaneously stabilizing power grids. In this study, the start-up phase of polymer electrolyte membrane (PEM) water electrolyzers is investigated in the context of intermittent renewable energy sources. During the start-up of the electrolysis system, the temperature increases, which directly influences hydrogen production efficiency. Experiments on a 100 kWel electrolyzer, combined with simulations of electrolyzers with up to 1 MWel, were used to analyze the start-up phase and assess its implications for operators and system designers. It is shown that part-load start-up at intermediate cell voltages of 1.80 V yields the highest efficiencies of 74.0 %LHV compared to heat-up using resistive electrical heating elements, which reaches maximum efficiencies of 60.9 %LHV. The results further indicate that large-scale electrolyzers with electrical heaters may serve as flexible sinks in electrical grids for durations of up to 15 min.
引用
收藏
页数:12
相关论文
共 43 条
[1]   HEAT-CAPACITY OF WATER AT EXTREMES OF SUPERCOOLING AND SUPERHEATING [J].
ANGELL, CA ;
OGUNI, M ;
SICHINA, WJ .
JOURNAL OF PHYSICAL CHEMISTRY, 1982, 86 (06) :998-1002
[2]   Life cycle assessment of hydrogen from proton exchange membrane water electrolysis in future energy systems [J].
Bareiss, Kay ;
de la Rua, Cristina ;
Moeckl, Maximilian ;
Hamacher, Thomas .
APPLIED ENERGY, 2019, 237 :862-872
[3]   Pumped hydro storage plants with improved operational flexibility using constant speed Francis runners [J].
Beevers, D. ;
Branchini, L. ;
Orlandini, V. ;
De Pascale, A. ;
Perez-Blanco, H. .
APPLIED ENERGY, 2015, 137 :629-637
[4]   Influence of Ionomer Content in IrO2/TiO2 Electrodes on PEM Water Electrolyzer Performance [J].
Bernt, Maximilian ;
Gasteiger, Hubert A. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (11) :F3179-F3189
[5]   Decarbonization of the Iron and Steel Industry with Direct Reduction of Iron Ore with Green Hydrogen [J].
Bhaskar, Abhinav ;
Assadi, Mohsen ;
Somehsaraei, Homam Nikpey .
ENERGIES, 2020, 13 (03)
[6]   A semiempirical study of the temperature dependence of the anode charge transfer coefficient of a 6 kW PEM electrolyzer [J].
Biaku, C. Y. ;
Dale, N. V. ;
Mann, M. D. ;
Salehfar, H. ;
Peters, A. I. ;
Han, T. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (16) :4247-4254
[7]   Potential for hydrogen and Power-to-Liquid in a low-carbon EU energy system using cost optimization [J].
Blanco, Herib ;
Nijs, Wouter ;
Ruf, Johannes ;
Faaij, Andre .
APPLIED ENERGY, 2018, 232 :617-639
[8]   A review of energy storage technologies for large scale photovoltaic power plants [J].
Bullich-Massague, Eduard ;
Cifuentes-Garcia, Francisco-Javier ;
Glenny-Crende, Ignacio ;
Cheah-Mane, Marc ;
Aragues-Penalba, Monica ;
Diaz-Gonzalez, Francisco ;
Gomis-Bellmunt, Oriol .
APPLIED ENERGY, 2020, 274
[9]   A comprehensive review on PEM water electrolysis [J].
Carmo, Marcelo ;
Fritz, David L. ;
Merge, Juergen ;
Stolten, Detlef .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (12) :4901-4934
[10]  
Chase M W., 1998, J. Phys. Chem. Ref. Data, P1529, DOI [10.18434/T42S31, DOI 10.18434/T42S31]