Large and Pressure-Dependent c-Axis Piezoresistivity of Highly Oriented Pyrolytic Graphite near Zero Pressure

被引:3
作者
Wang, Bingjie [1 ]
Li, Juyao [2 ]
Fang, Zheng [1 ]
Jiang, Yifan [1 ]
Li, Shuo [1 ]
Zhan, Fangyuan [1 ]
Dai, Zhaohe [2 ]
Chen, Qing [1 ]
Wei, Xianlong [1 ]
机构
[1] Peking Univ, Sch Elect, Key Lab Phys & Chem Nanodevices, Beijing 100871, Peoples R China
[2] Peking Univ, Coll Engn, Dept Mech & Engn Sci, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
graphite; in situ SEM; c-axis stress; c-axis piezoresistivity; indentation; ELECTRICAL-RESISTANCE; THERMAL-CONDUCTIVITY; ELECTRONIC-STRUCTURE; BAND-STRUCTURE; GRAPHENE; INTERCALATION; RESISTIVITY; DIRECTION; SILICON; STRAIN;
D O I
10.1021/acs.nanolett.4c00687
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The c-axis piezoresistivity is a fundamental and important parameter of graphite, but its value near zero pressure has not been well determined. Herein, a new method for studying the c-axis piezoresistivity of van der Waals materials near zero pressure is developed on the basis of in situ scanning electron microscopy and finite element simulation. The c-axis piezoresistivity of microscale highly oriented pyrolytic graphite (HOPG) is found to show a large value of 5.68 x 10(-5) kPa(-1) near zero pressure and decreases by 2 orders of magnitude to the established value of similar to 10(-7) kPa(-1) when the pressure increases to 200 MPa. By modulating the serial tunneling barrier model on the basis of the stacking faults, we describe the c-axis electrical transport of HOPG under compression. The large c-axis piezoresistivity near zero pressure and its large decrease in magnitude with pressure are attributed to the rapid stiffening of the electromechanical properties under compression.
引用
收藏
页码:4965 / 4971
页数:7
相关论文
共 65 条
[1]   In situ AFM study of interlayer spacing during anion intercalation into HOPG in aqueous electrolyte [J].
Alliata, D ;
Kötz, R ;
Haas, O ;
Siegenthaler, H .
LANGMUIR, 1999, 15 (24) :8483-8489
[2]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[3]   Review: Semiconductor Piezoresistance for Microsystems [J].
Barlian, A. Alvin ;
Park, Woo-Tae ;
Mallon, Joseph R., Jr. ;
Rastegar, Ali J. ;
Pruitt, Beth L. .
PROCEEDINGS OF THE IEEE, 2009, 97 (03) :513-552
[4]  
Bridgman PW, 1917, P AM ACAD ARTS SCI, V52, P571
[5]   Impermeable atomic membranes from graphene sheets [J].
Bunch, J. Scott ;
Verbridge, Scott S. ;
Alden, Jonathan S. ;
van der Zande, Arend M. ;
Parpia, Jeevak M. ;
Craighead, Harold G. ;
McEuen, Paul L. .
NANO LETTERS, 2008, 8 (08) :2458-2462
[6]   Density functional calculations on the intricacies of Moire patterns on graphite [J].
Campanera, J. M. ;
Savini, G. ;
Suarez-Martinez, I. ;
Heggie, M. I. .
PHYSICAL REVIEW B, 2007, 75 (23)
[7]   Local Strain Engineering in Atomically Thin MoS2 [J].
Castellanos-Gomez, Andres ;
Roldan, Rafael ;
Cappelluti, Emmanuele ;
Buscema, Michele ;
Guinea, Francisco ;
van der Zant, Herre S. J. ;
Steele, Gary A. .
NANO LETTERS, 2013, 13 (11) :5361-5366
[8]   Direct Measurement of the Magnitude of the van der Waals Interaction of Single and Multilayer Graphene [J].
Chiou, Yu-Cheng ;
Olukan, Tuza Adeyemi ;
Almahri, Mariam Ali ;
Apostoleris, Harry ;
Chiu, Cheng Hsiang ;
Lai, Chia-Yun ;
Lu, Jin-You ;
Santos, Sergio ;
Almansouri, Ibraheem ;
Chiesa, Matteo .
LANGMUIR, 2018, 34 (41) :12335-12343
[9]   Unprecedented Piezoresistance Coefficient in Strained Silicon Carbide [J].
Cui, Junfeng ;
Zhang, Zhenyu ;
Liu, Dongdong ;
Zhang, Danli ;
Hu, Wei ;
Zou, Li ;
Lu, Yao ;
Zhang, Chi ;
Lu, Huanhuan ;
Tang, Chun ;
Jiang, Nan ;
Parkin, Ivan P. ;
Guo, Dongming .
NANO LETTERS, 2019, 19 (09) :6569-6576
[10]   A review of Winkler's foundation and its profound influence on adhesion and soft matter applications [J].
Dillard, David A. ;
Mukherjee, Bikramjit ;
Karnal, Preetika ;
Batra, Romesh C. ;
Frechette, Joelle .
SOFT MATTER, 2018, 14 (19) :3669-3683