Forecasting insect dynamics in a changing world

被引:5
作者
Bahlai, Christie A. [1 ,2 ]
机构
[1] Kent State Univ, Dept Biol Sci, Kent, OH 44242 USA
[2] Kent State Univ, Environm Sci & Design Res Inst, Kent, OH 44242 USA
基金
美国国家科学基金会;
关键词
CLIMATE; CONSERVATION; RESPONSES; DECLINES;
D O I
10.1016/j.cois.2023.101133
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Predicting how insects will respond to stressors through time is difficult because of the diversity of insects, environments, and approaches used to monitor and model. Forecasting models take correlative/statistical, mechanistic models, and integrated forms; in some cases, temporal processes can be inferred from spatial models. Because of heterogeneity associated with broad community measurements, models are often unable to identify mechanistic explanations. Many present efforts to forecast insect dynamics are restricted to single-species models, which can offer precise predictions but limited generalizability. Trait-based approaches may offer a good compromise that limits the masking of the ranges of responses while still offering insight. Regardless of the modeling approach, the data used to parameterize a forecasting model should be carefully evaluated for temporal autocorrelation, minimum data needs, and sampling biases in the data. Forecasting models can be tested using near-term predictions and revised to improve future forecasts.
引用
收藏
页数:9
相关论文
共 84 条
[1]   The broken window: An algorithm for quantifying and characterizing misleading trajectories in ecological processes [J].
Bahlai, Christie A. ;
White, Easton R. ;
Perrone, Julia D. ;
Cusser, Sarah ;
Whitney, Kaitlin Stack .
ECOLOGICAL INFORMATICS, 2021, 64
[2]   The Dynamic Shift Detector: An algorithm to identify changes in parameter values governing populations [J].
Bahlai, Christie A. ;
Zipkin, Elise F. .
PLOS COMPUTATIONAL BIOLOGY, 2020, 16 (01)
[3]   A mechanistic model for a tritrophic interaction involving soybean aphid, its host plants, and multiple natural enemies [J].
Bahlai, Christine A. ;
Weiss, Ross M. ;
Hallett, Rebecca H. .
ECOLOGICAL MODELLING, 2013, 254 :54-70
[4]   DDRP: Real-time phenology and climatic suitability modeling of invasive insects [J].
Barker, Brittany S. ;
Coop, Leonard ;
Wepprich, Tyson ;
Grevstad, Fritzi ;
Cook, Gericke .
PLOS ONE, 2020, 15 (12)
[5]   Why Are Species' Traits Weak Predictors of Range Shifts? [J].
Beissinger, Steven R. ;
Riddell, Eric A. .
ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS, VOL 52, 2021, 2021, 52 :47-66
[6]   Embracing imperfection: Machine-assisted invertebrate classification in real-world datasets [J].
Blair, Jarrett ;
Weiser, Michael D. ;
de Beurs, Kirsten ;
Kaspari, Michael ;
Siler, Cameron ;
Marshall, Katie E. .
ECOLOGICAL INFORMATICS, 2022, 72
[7]   Unravelling insect declines: can space replace time? [J].
Bluethgen, Nico ;
Staab, Michael ;
Achury, Rafael ;
Weisser, Wolfgang W. .
BIOLOGY LETTERS, 2022, 18 (04)
[8]   The forecast trap [J].
Boettiger, Carl .
ECOLOGY LETTERS, 2022, 25 (07) :1655-1664
[9]   We need to talk about nonprobability samples [J].
Boyd, Robin J. ;
Powney, Gary D. ;
Pescott, Oliver L. .
TRENDS IN ECOLOGY & EVOLUTION, 2023, 38 (06) :521-531
[10]   ROBITT: A tool for assessing the risk-of-bias in studies of temporal trends in ecology [J].
Boyd, Robin J. ;
Powney, Gary D. ;
Burns, Fiona ;
Danet, Alain ;
Duchenne, Francois ;
Grainger, Matthew J. ;
Jarvis, Susan G. ;
Martin, Gabrielle ;
Nilsen, Erlend B. ;
Porcher, Emmanuelle ;
Stewart, Gavin B. ;
Wilson, Oliver J. ;
Pescott, Oliver L. .
METHODS IN ECOLOGY AND EVOLUTION, 2022, 13 (07) :1497-1507