Synapsin condensation controls synaptic vesicle sequestering and dynamics

被引:22
|
作者
Hoffmann, Christian [1 ]
Rentsch, Jakob [2 ]
Tsunoyama, Taka A. [3 ]
Chhabra, Akshita [1 ]
Aguilar Perez, Gerard [1 ]
Chowdhury, Rajdeep [4 ,5 ,6 ]
Trnka, Franziska [1 ]
Korobeinikov, Aleksandr A. [1 ]
Shaib, Ali H. [4 ,5 ,6 ]
Ganzella, Marcelo [7 ]
Giannone, Gregory [8 ]
Rizzoli, Silvio O. [4 ,5 ,6 ]
Kusumi, Akihiro [3 ]
Ewers, Helge [2 ]
Milovanovic, Dragomir [1 ]
机构
[1] German Ctr Neurodegenerat Dis DZNE, Lab Mol Neurosci, D-10117 Berlin, Germany
[2] Free Univ Berlin, Inst Chem & Biochem, D-14195 Berlin, Germany
[3] Grad Univ OIST, Okinawa Inst Sci & Technol, Membrane Cooperat Unit, Onna, Okinawa 9040495, Japan
[4] Univ Med Ctr Gottingen, Inst Neuro & Sensory Physiol, D-37073 Gottingen, Germany
[5] Biostruct Imaging Neurodegenerat BIN Ctr, Gottingen, Germany
[6] Excellence Cluster Multiscale Bioimaging, D-37073 Gottingen, Germany
[7] Max Planck Inst Multidisciplinary Sci, Dept Neurobiol, D-37077 Gottingen, Germany
[8] Univ Bordeaux, Interdisciplinary Inst Neurosci, UMR 5297, F-33000 Bordeaux, France
基金
欧洲研究理事会;
关键词
LOW-DENSITY; PROTEINS; PHASE; POOL; LOCALIZATION; TRANSMITTER; MOLECULES; DIFFUSION; TRACKING; MOBILITY;
D O I
10.1038/s41467-023-42372-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Neuronal transmission relies on the regulated secretion of neurotransmitters, which are packed in synaptic vesicles (SVs). Hundreds of SVs accumulate at synaptic boutons. Despite being held together, SVs are highly mobile, so that they can be recruited to the plasma membrane for their rapid release during neuronal activity. However, how such confinement of SVs corroborates with their motility remains unclear. To bridge this gap, we employ ultrafast single-molecule tracking (SMT) in the reconstituted system of native SVs and in living neurons. SVs and synapsin 1, the most highly abundant synaptic protein, form condensates with liquid-like properties. In these condensates, synapsin 1 movement is slowed in both at short (i.e., 60-nm) and long (i.e., several hundred-nm) ranges, suggesting that the SV-synapsin 1 interaction raises the overall packing of the condensate. Furthermore, two-color SMT and super-resolution imaging in living axons demonstrate that synapsin 1 drives the accumulation of SVs in boutons. Even the short intrinsically-disordered fragment of synapsin 1 was sufficient to restore the native SV motility pattern in synapsin triple knock-out animals. Thus, synapsin 1 condensation is sufficient to guarantee reliable confinement and motility of SVs, allowing for the formation of mesoscale domains of SVs at synapses in vivo. Brain functioning critically relies on coordinated neurotransmitter release by synaptic vesicles (SVs) at synapses. This study shows that synapsin/SVs condensation is sufficient to guarantee reliable confinement and motility of SVs at synapses in vivo.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] DYNAMICS OF SYNAPTIC VESICLE FUSION AND MEMBRANE RETRIEVAL IN SYNAPTIC TERMINALS
    VONGERSDORFF, H
    MATTHEWS, G
    NATURE, 1994, 367 (6465) : 735 - 739
  • [42] Platelet Activating Factor Enhances Synaptic Vesicle Exocytosis Via PKC, Elevated Intracellular Calcium, and Modulation of Synapsin 1 Dynamics and Phosphorylation
    Hammond, Jennetta W.
    Lu, Shao-Ming
    Gelbard, Harris A.
    FRONTIERS IN CELLULAR NEUROSCIENCE, 2016, 9
  • [43] Mutations in synapsin IIa reveal ATP- dependent regulation of synaptic vesicle clustering and recruitment
    Shulman, Y. P.
    Gitler, D.
    JOURNAL OF MOLECULAR NEUROSCIENCE, 2014, 53 : S116 - S116
  • [44] ABERRANT NEURITES AND SYNAPTIC VESICLE PROTEIN-DEFICIENCY IN SYNAPSIN II-DEPLETED NEURONS
    FERREIRA, A
    KOSIK, KS
    GREENGARD, P
    HAN, HQ
    SCIENCE, 1994, 264 (5161) : 977 - 979
  • [45] An Endocytic Scaffolding Protein together with Synapsin Regulates Synaptic Vesicle Clustering in the Drosophila Neuromuscular Junction
    Winther, Asa M. E.
    Vorontsova, Olga
    Rees, Kathryn A.
    Nareoja, Tuomas
    Sopova, Elena
    Jiao, Wei
    Shupliakov, Oleg
    JOURNAL OF NEUROSCIENCE, 2015, 35 (44): : 14756 - 14770
  • [46] Activity-Dependence of Synaptic Vesicle Dynamics
    Forte, Luca A.
    Gramlich, Michael W.
    Klyachko, Vitaly A.
    JOURNAL OF NEUROSCIENCE, 2017, 37 (44): : 10597 - 10610
  • [47] Dynamics of Membrane Tension and Synaptic Vesicle Recycling
    Perez, Carolina Gomis
    Dudzinski, Natasha
    Rouches, Mason
    Machta, Benjamin B.
    Zenisek, David
    Karatekin, Erdem
    BIOPHYSICAL JOURNAL, 2021, 120 (03) : 323A - 323A
  • [48] A Nanoscale Resolution View on Synaptic Vesicle Dynamics
    Maschi, Dario
    Klyachko, Vitaly A.
    SYNAPSE, 2015, 69 (05) : 256 - 267
  • [49] Quantifying synaptic vesicle protein dynamics.
    Bai, Jihong
    Dittman, Jeremy S.
    Kaplan, Joshua M.
    JOURNAL OF GENERAL PHYSIOLOGY, 2007, 130 (01): : 12a - 12a
  • [50] Visualization of synaptic vesicle dynamics with fluorescence proteins
    Li, Wang
    Geng, Chunyang
    Liu, Bo
    FOLIA NEUROPATHOLOGICA, 2018, 56 (01) : 21 - 29