Two-Stage Feature Generator for Handwritten Digit Classification

被引:0
作者
Pirim, M. Altinay Gunler [1 ]
Tora, Hakan [2 ]
Oztoprak, Kasim [3 ]
Butun, Ismail [4 ,5 ]
机构
[1] Vakifbank, TR-06200 Ankara, Turkiye
[2] Atilim Univ, Dept Avion, TR-06830 Ankara, Turkiye
[3] Konya Food & Agr Univ, Dept Comp Engn, TR-42080 Konya, Turkiye
[4] KTH Royal Inst Technol, Dept Comp Engn, SE-11428 Stockholm, Sweden
[5] OSTIM Tech Univ, Dept Comp Engn, TR-06370 Ankara, Turkiye
关键词
minimum distance classifier; neural network; principal component analysis; support vector machine; pattern recognition; soft sensor; FEATURE-EXTRACTION; NETWORKS; DECISION; SPARSE;
D O I
10.3390/s23208477
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In this paper, a novel feature generator framework is proposed for handwritten digit classification. The proposed framework includes a two-stage cascaded feature generator. The first stage is based on principal component analysis (PCA), which generates projected data on principal components as features. The second one is constructed by a partially trained neural network (PTNN), which uses projected data as inputs and generates hidden layer outputs as features. The features obtained from the PCA and PTNN-based feature generator are tested on the MNIST and USPS datasets designed for handwritten digit sets. Minimum distance classifier (MDC) and support vector machine (SVM) methods are exploited as classifiers for the obtained features in association with this framework. The performance evaluation results show that the proposed framework outperforms the state-of-the-art techniques and achieves accuracies of 99.9815% and 99.9863% on the MNIST and USPS datasets, respectively. The results also show that the proposed framework achieves almost perfect accuracies, even with significantly small training data sizes.
引用
收藏
页数:17
相关论文
共 43 条
[1]   Deep-Learning-Based Character Recognition from Handwriting Motion Data Captured Using IMU and Force Sensors [J].
Alemayoh, Tsige Tadesse ;
Shintani, Masaaki ;
Lee, Jae Hoon ;
Okamoto, Shingo .
SENSORS, 2022, 22 (20)
[2]  
[Anonymous], P 3 INT WORKSH FRONT
[3]  
[Anonymous], 2008, P ADV NEURAL INFORM
[4]  
Ayyaz M. N, 2012, Pak. J. Engg. Appl. Sci., V10, P57
[5]  
Bettilyon T.E., 2018, CLASSIFY MNIST DIGIT
[6]   AUTO-ASSOCIATION BY MULTILAYER PERCEPTRONS AND SINGULAR VALUE DECOMPOSITION [J].
BOURLARD, H ;
KAMP, Y .
BIOLOGICAL CYBERNETICS, 1988, 59 (4-5) :291-294
[7]   Invariant Scattering Convolution Networks [J].
Bruna, Joan ;
Mallat, Stephane .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (08) :1872-1886
[8]   The Hybrid Stylus: A Multi-Surface Active Stylus for Interacting with and Handwriting on Paper, Tabletop Display or Both [J].
Campos, Cuauhtli ;
Sandak, Jakub ;
Kljun, Matjaz ;
Pucihar, Klen Copic .
SENSORS, 2022, 22 (18)
[9]   PCANet: A Simple Deep Learning Baseline for Image Classification? [J].
Chan, Tsung-Han ;
Jia, Kui ;
Gao, Shenghua ;
Lu, Jiwen ;
Zeng, Zinan ;
Ma, Yi .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (12) :5017-5032
[10]   On self-organizing algorithms and networks for class-separability features [J].
Chatterjee, C ;
Roychowdhury, VP .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1997, 8 (03) :663-678