AIDMAN: An AI-based object detection system for malaria diagnosis from smartphone thin-blood-smear images

被引:17
作者
Liu, Ruicun [1 ]
Liu, Tuoyu [1 ]
Dan, Tingting [2 ]
Yang, Shan [1 ]
Li, Yanbing [1 ]
Luo, Boyu [1 ]
Zhuang, Yingtan [1 ]
Fan, Xinyue [1 ]
Zhang, Xianchao [3 ,4 ]
Cai, Hongmin [2 ]
Teng, Yue [1 ]
机构
[1] Beijing Inst Microbiol & Epidemiol, State Key Lab Pathogen & Biosecur, Beijing 100071, Peoples R China
[2] South China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510600, Peoples R China
[3] Jiaxing Univ, Key Lab Med Elect & Digital Hlth Zhejiang Prov, Jiaxing 314001, Peoples R China
[4] Jiaxing Univ, Engn Res Ctr Intelligent Human Hlth Situat Awarene, Jiaxing 314001, Peoples R China
来源
PATTERNS | 2023年 / 4卷 / 09期
关键词
POLYMERASE-CHAIN-REACTION; PREVENTION;
D O I
10.1016/j.patter.2023.100806
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Malaria is a significant public health concern, with -95% of cases occurring in Africa, but accurate and timely diagnosis is problematic in remote and low-income areas. Here, we developed an artificial intelligence-based object detection system for malaria diagnosis (AIDMAN). In this system, the YOLOv5 model is used to detect cells in a thin blood smear. An attentional aligner model (AAM) is then applied for cellular classification that consists of multi-scale features, a local context aligner, and multi-scale attention. Finally, a convolutional neural network classifier is applied for diagnosis using blood-smear images, reducing interference caused by false positive cells. The results demonstrate that AIDMAN handles interference well, with a diagnostic ac-curacy of 98.62% for cells and 97% for blood-smear images. The prospective clinical validation accuracy of 98.44% is comparable to that of microscopists. AIDMAN shows clinically acceptable detection of malaria parasites and could aid malaria diagnosis, especially in areas lacking experienced parasitologists and equipment.
引用
收藏
页数:10
相关论文
共 64 条
[1]   Malaria parasite detection in thick blood smear microscopic images using modified YOLOV3 and YOLOV4 models [J].
Abdurahman, Fetulhak ;
Fante, Kinde Anlay ;
Aliy, Mohammed .
BMC BIOINFORMATICS, 2021, 22 (01)
[2]   Real-time PCR assay and rapid diagnostic tests for the diagnosis of clinically suspected malaria patients in Bangladesh [J].
Alam, Mohammad Shafiul ;
Mohon, Abu Naser ;
Mustafa, Shariar ;
Khan, Wasif Ali ;
Islam, Nazrul ;
Karim, Mohammad Jahirul ;
Khanum, Hamida ;
Sullivan, David J., Jr. ;
Haque, Rashidul .
MALARIA JOURNAL, 2011, 10
[3]   Major subpopulations of Plasmodium falciparum in sub-Saharan Africa [J].
Amambua-Ngwa, Alfred ;
Amenga-Etego, Lucas ;
Kamau, Edwin ;
Amato, Roberto ;
Ghansah, Anita ;
Golassa, Lemu ;
Randrianarivelojosia, Milijaona ;
Ishengoma, Deus ;
Apinjoh, Tobias ;
Maiga-Ascofare, Oumou ;
Andagalu, Ben ;
Yavo, William ;
Bouyou-Akotet, Marielle ;
Kolapo, Oyebola ;
Mane, Karim ;
Worwui, Archibald ;
Jeffries, David ;
Simpson, Vikki ;
D'Alessandro, Umberto ;
Kwiatkowski, Dominic ;
Djimde, Abdoulaye A. .
SCIENCE, 2019, 365 (6455) :813-+
[4]  
[Anonymous], 2020, World Malaria Report 2020
[5]  
[Anonymous], 2022, World malaria report 2022
[6]   Limitations of rapid diagnostic tests in malaria surveys in areas with varied transmission intensity in Uganda 2017-2019: Implications for selection and use of HRP2 RDTs [J].
Bosco, Agaba B. ;
Nankabirwa, Joaniter I. ;
Yeka, Adoke ;
Nsobya, Sam ;
Gresty, Karryn ;
Anderson, Karen ;
Mbaka, Paul ;
Prosser, Christiane ;
Smith, David ;
Opigo, Jimmy ;
Namubiru, Rhoda ;
Arinaitwe, Emmanuel ;
Kissa, John ;
Gonahasa, Samuel ;
Won, Sungho ;
Lee, Bora ;
Lim, Chae Seung ;
Karamagi, Charles ;
Cheng, Qin ;
Nakayaga, Joan K. ;
Kamya, Moses R. .
PLOS ONE, 2020, 15 (12)
[7]   Use of malaria RDTs in various health contexts across sub-Saharan Africa: a systematic review [J].
Boyce, Matthew R. ;
O'Meara, Wendy P. .
BMC PUBLIC HEALTH, 2017, 17
[8]   Equine trypanosomosis: enigmas and diagnostic challenges [J].
Buscher, Philippe ;
Gonzatti, Mary Isabel ;
Hebert, Laurent ;
Inoue, Noboru ;
Pascucci, Ilaria ;
Schnaufer, Achim ;
Suganuma, Keisuke ;
Touratier, Louis ;
Van Reet, Nick .
PARASITES & VECTORS, 2019, 12 (1)
[9]   A semi-automatic method for quantification and classification of erythrocytes infected with malaria parasites in microscopic images [J].
Diaz, Gloria ;
Gonzalez, Fabio A. ;
Romero, Eduardo .
JOURNAL OF BIOMEDICAL INFORMATICS, 2009, 42 (02) :296-307
[10]  
Dosovitskiy A, 2021, Arxiv, DOI arXiv:2010.11929