Audio-Visual Generalized Zero-Shot Learning Based on Variational Information Bottleneck

被引:0
作者
Li, Yapeng
Luo, Yong [1 ]
Du, Bo [1 ]
机构
[1] Wuhan Univ, Inst Artificial Intelligence, Sch Comp Sci, Natl Engn Res Ctr Multimedia Software, Wuhan 430072, Peoples R China
来源
2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME | 2023年
基金
中国国家自然科学基金;
关键词
Audio-visual; generalized zero-shot learning; information bottleneck; multi-modality fusion;
D O I
10.1109/ICME55011.2023.00084
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Audio-visual generalized zero-shot learning (GZSL) aims to train a model on seen classes for classifying data samples from both seen classes and unseen classes. Due to the absence of unseen training samples, the model tends to misclassify unseen class samples into seen classes. To mitigate this problem, in this paper, we propose a method based on variational information bottleneck for audio-visual GZSL. Specifically, we model the joint representations as a product-of-experts over marginal representations to integrate the information of audio and visual. Besides, we introduce variational information bottleneck to the learning of audio-visual joint representations and marginal representations of audio, visual, and text label modalities. This helps our model reduce the negative impact of information that cannot be generalized to unseen classes. Experimental results conducted on the UCF-GZSL, VGGSound-GZSL, and ActivityNet-GZSL benchmarks demonstrate the effectiveness and superiority of the proposed model for audio-visual GZSL.
引用
收藏
页码:450 / 455
页数:6
相关论文
共 50 条
  • [1] A Generative Approach to Audio-Visual Generalized Zero-Shot Learning: Combining Contrastive and Discriminative Techniques
    Zheng, Qichen
    Hong, Jie
    Farazi, Moshiur
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [2] Information bottleneck and selective noise supervision for zero-shot learning
    Zhou, Lei
    Liu, Yang
    Zhang, Pengcheng
    Bai, Xiao
    Gu, Lin
    Zhou, Jun
    Yao, Yazhou
    Harada, Tatsuya
    Zheng, Jin
    Hancock, Edwin
    MACHINE LEARNING, 2023, 112 (07) : 2239 - 2261
  • [3] Information bottleneck and selective noise supervision for zero-shot learning
    Lei Zhou
    Yang Liu
    Pengcheng Zhang
    Xiao Bai
    Lin Gu
    Jun Zhou
    Yazhou Yao
    Tatsuya Harada
    Jin Zheng
    Edwin Hancock
    Machine Learning, 2023, 112 : 2239 - 2261
  • [4] Generalized Zero-Shot Learning using Identifiable Variational Autoencoders
    Gull, Muqaddas
    Arif, Omar
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 191
  • [5] Contrastive visual feature filtering for generalized zero-shot learning
    Meng, Shixuan
    Jiang, Rongxin
    Tian, Xiang
    Zhou, Fan
    Chen, Yaowu
    Liu, Junjie
    Shen, Chen
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024,
  • [6] Generalized Zero-Shot Learning Based on Manifold Alignment
    Xu, Rui
    Shao, Shuai
    Liu, Baodi
    Liu, Weifeng
    2022 16TH IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP2022), VOL 1, 2022, : 202 - 207
  • [7] A Unified Approach for Conventional Zero-Shot, Generalized Zero-Shot, and Few-Shot Learning
    Rahman, Shafin
    Khan, Salman
    Porikli, Fatih
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (11) : 5652 - 5667
  • [8] Generating visual representations for zero-shot learning via adversarial learning and variational autoencoders
    Gull, Muqaddas
    Arif, Omar
    INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2023, 52 (05) : 636 - 651
  • [9] Triple Loss Based Framework for Generalized Zero-Shot Learning
    Shen, Yaying
    Li, Qun
    Xu, Ding
    Zhang, Ziyi
    Yang, Rui
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2022, E105D (04) : 832 - 835
  • [10] Model Selection for Generalized Zero-Shot Learning
    Zhang, Hongguang
    Koniusz, Piotr
    COMPUTER VISION - ECCV 2018 WORKSHOPS, PT II, 2019, 11130 : 198 - 204